Skip to content

Commit dad79ac

Browse files
authored
[Dup] Fix grammar in documents (onnx#4094)
* fix grammar in doc Signed-off-by: Chun-Wei Chen <[email protected]> * update docs Signed-off-by: Chun-Wei Chen <[email protected]>
1 parent ee4888c commit dad79ac

File tree

15 files changed

+402
-402
lines changed

15 files changed

+402
-402
lines changed

docs/Changelog.md

Lines changed: 226 additions & 226 deletions
Large diffs are not rendered by default.

docs/Operators.md

Lines changed: 85 additions & 85 deletions
Large diffs are not rendered by default.

docs/VersionConverter.md

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -32,7 +32,7 @@ ModelProto ConvertVersion(
3232
```
3333

3434
which accepts an input `ModelProto`, the initial opset version of the model,
35-
and the target opset verison, and which returns a new `ModelProto` which
35+
and the target opset version, and which returns a new `ModelProto` which
3636
is the result of apply all relevant adapters between initial_version and
3737
target_version. For a list of available passes, see
3838
[convert.h](/onnx/version_converter/convert.h).

onnx/defs/controlflow/defs.cc

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -646,7 +646,7 @@ ONNX_OPERATOR_SET_SCHEMA(
646646
static const char* scan_16_doc = R"DOC(
647647
Scan can be used to iterate over one or more scan_input tensors,
648648
constructing zero or more scan_output tensors. It combines ideas from general recurrences,
649-
functional programming constructs such as scan, fold, map, and zip and is intended to enable
649+
functional programming constructs such as scan, fold, map, and zip, and is intended to enable
650650
generalizations of RNN-like constructs for sequence-to-sequence processing.
651651
Other tensors (referred to as state_variables here) can be used to carry a state
652652
when iterating from one element to another (similar to hidden-state in RNNs, also referred

onnx/defs/controlflow/old.cc

Lines changed: 3 additions & 3 deletions
Original file line numberDiff line numberDiff line change
@@ -340,7 +340,7 @@ void ScanInferenceFunctionOpset9(InferenceContext& ctx) {
340340
static const char* scan_opset8_doc = R"DOC(
341341
Scan can be used to iterate over one or more scan_input tensors,
342342
constructing zero or more scan_output tensors. It combines ideas from general recurrences,
343-
functional programming constructs such as scan, fold, map, and zip and is intended to enable
343+
functional programming constructs such as scan, fold, map, and zip, and is intended to enable
344344
generalizations of RNN-like constructs for sequence-to-sequence processing.
345345
Other tensors (referred to as state_variables here) can be used to carry a state
346346
when iterating from one element to another (similar to hidden-state in RNNs, also referred
@@ -1112,7 +1112,7 @@ ONNX_OPERATOR_SET_SCHEMA(
11121112
static const char* scan_9_doc = R"DOC(
11131113
Scan can be used to iterate over one or more scan_input tensors,
11141114
constructing zero or more scan_output tensors. It combines ideas from general recurrences,
1115-
functional programming constructs such as scan, fold, map, and zip and is intended to enable
1115+
functional programming constructs such as scan, fold, map, and zip, and is intended to enable
11161116
generalizations of RNN-like constructs for sequence-to-sequence processing.
11171117
Other tensors (referred to as state_variables here) can be used to carry a state
11181118
when iterating from one element to another (similar to hidden-state in RNNs, also referred
@@ -1985,7 +1985,7 @@ ONNX_OPERATOR_SET_SCHEMA(
19851985
static const char* scan_11_doc = R"DOC(
19861986
Scan can be used to iterate over one or more scan_input tensors,
19871987
constructing zero or more scan_output tensors. It combines ideas from general recurrences,
1988-
functional programming constructs such as scan, fold, map, and zip and is intended to enable
1988+
functional programming constructs such as scan, fold, map, and zip, and is intended to enable
19891989
generalizations of RNN-like constructs for sequence-to-sequence processing.
19901990
Other tensors (referred to as state_variables here) can be used to carry a state
19911991
when iterating from one element to another (similar to hidden-state in RNNs, also referred

onnx/defs/logical/defs.cc

Lines changed: 17 additions & 17 deletions
Original file line numberDiff line numberDiff line change
@@ -79,11 +79,11 @@ ONNX_OPERATOR_SET_SCHEMA(
7979
.TypeConstraint(
8080
"T",
8181
{"tensor(bool)"},
82-
"Constrains input to boolean tensor.")
82+
"Constrain input to boolean tensor.")
8383
.TypeConstraint(
8484
"T1",
8585
{"tensor(bool)"},
86-
"Constrains output to boolean tensor."));
86+
"Constrain output to boolean tensor."));
8787

8888
ONNX_OPERATOR_SET_SCHEMA(
8989
Or,
@@ -93,11 +93,11 @@ ONNX_OPERATOR_SET_SCHEMA(
9393
.TypeConstraint(
9494
"T",
9595
{"tensor(bool)"},
96-
"Constrains input to boolean tensor.")
96+
"Constrain input to boolean tensor.")
9797
.TypeConstraint(
9898
"T1",
9999
{"tensor(bool)"},
100-
"Constrains output to boolean tensor."));
100+
"Constrain output to boolean tensor."));
101101

102102
ONNX_OPERATOR_SET_SCHEMA(
103103
Xor,
@@ -107,11 +107,11 @@ ONNX_OPERATOR_SET_SCHEMA(
107107
.TypeConstraint(
108108
"T",
109109
{"tensor(bool)"},
110-
"Constrains input to boolean tensor.")
110+
"Constrain input to boolean tensor.")
111111
.TypeConstraint(
112112
"T1",
113113
{"tensor(bool)"},
114-
"Constrains output to boolean tensor."));
114+
"Constrain output to boolean tensor."));
115115

116116
ONNX_OPERATOR_SET_SCHEMA(
117117
Greater,
@@ -121,11 +121,11 @@ ONNX_OPERATOR_SET_SCHEMA(
121121
.TypeConstraint(
122122
"T",
123123
OpSchema::all_numeric_types_with_bfloat(),
124-
"Constrains input types to all numeric tensors.")
124+
"Constrain input types to all numeric tensors.")
125125
.TypeConstraint(
126126
"T1",
127127
{"tensor(bool)"},
128-
"Constrains output to boolean tensor."));
128+
"Constrain output to boolean tensor."));
129129

130130
ONNX_OPERATOR_SET_SCHEMA(
131131
Less,
@@ -135,11 +135,11 @@ ONNX_OPERATOR_SET_SCHEMA(
135135
.TypeConstraint(
136136
"T",
137137
OpSchema::all_numeric_types_with_bfloat(),
138-
"Constrains input types to all numeric tensors.")
138+
"Constrain input types to all numeric tensors.")
139139
.TypeConstraint(
140140
"T1",
141141
{"tensor(bool)"},
142-
"Constrains output to boolean tensor."));
142+
"Constrain output to boolean tensor."));
143143

144144
ONNX_OPERATOR_SET_SCHEMA(
145145
Equal,
@@ -161,11 +161,11 @@ ONNX_OPERATOR_SET_SCHEMA(
161161
"tensor(float)",
162162
"tensor(double)",
163163
"tensor(bfloat16)"},
164-
"Constrains input types to all numeric tensors.")
164+
"Constrain input types to all numeric tensors.")
165165
.TypeConstraint(
166166
"T1",
167167
{"tensor(bool)"},
168-
"Constrains output to boolean tensor."));
168+
"Constrain output to boolean tensor."));
169169

170170
static const char* Not_ver1_doc = R"DOC(
171171
Returns the negation of the input tensor element-wise.
@@ -197,7 +197,7 @@ ONNX_OPERATOR_SET_SCHEMA(
197197
.TypeConstraint(
198198
"T",
199199
{"tensor(bool)"},
200-
"Constrains input/output to boolean tensors.")
200+
"Constrain input/output to boolean tensors.")
201201
.TypeAndShapeInferenceFunction(unaryLogicalOpInference));
202202

203203
static const char* BitShift_ver11_doc = R"DOC(
@@ -278,11 +278,11 @@ ONNX_OPERATOR_SET_SCHEMA(
278278
.TypeConstraint(
279279
"T",
280280
OpSchema::all_numeric_types_with_bfloat(),
281-
"Constrains input types to all numeric tensors.")
281+
"Constrain input types to all numeric tensors.")
282282
.TypeConstraint(
283283
"T1",
284284
{"tensor(bool)"},
285-
"Constrains output to boolean tensor.")
285+
"Constrain output to boolean tensor.")
286286
.TypeAndShapeInferenceFunction(InferenceFunction())
287287
.FunctionBody(R"ONNX(
288288
{
@@ -300,11 +300,11 @@ ONNX_OPERATOR_SET_SCHEMA(
300300
.TypeConstraint(
301301
"T",
302302
OpSchema::all_numeric_types_with_bfloat(),
303-
"Constrains input types to all numeric tensors.")
303+
"Constrain input types to all numeric tensors.")
304304
.TypeConstraint(
305305
"T1",
306306
{"tensor(bool)"},
307-
"Constrains output to boolean tensor.")
307+
"Constrain output to boolean tensor.")
308308
.TypeAndShapeInferenceFunction(InferenceFunction())
309309
.FunctionBody(R"ONNX(
310310
{

onnx/defs/logical/old.cc

Lines changed: 28 additions & 28 deletions
Original file line numberDiff line numberDiff line change
@@ -47,11 +47,11 @@ ONNX_OPERATOR_SET_SCHEMA(
4747
.TypeConstraint(
4848
"T",
4949
OpSchema::all_numeric_types(),
50-
"Constrains input types to all numeric tensors.")
50+
"Constrain input types to all numeric tensors.")
5151
.TypeConstraint(
5252
"T1",
5353
{"tensor(bool)"},
54-
"Constrains output to boolean tensor."));
54+
"Constrain output to boolean tensor."));
5555

5656
ONNX_OPERATOR_SET_SCHEMA(
5757
Less,
@@ -61,11 +61,11 @@ ONNX_OPERATOR_SET_SCHEMA(
6161
.TypeConstraint(
6262
"T",
6363
OpSchema::all_numeric_types(),
64-
"Constrains input types to all numeric tensors.")
64+
"Constrain input types to all numeric tensors.")
6565
.TypeConstraint(
6666
"T1",
6767
{"tensor(bool)"},
68-
"Constrains output to boolean tensor."));
68+
"Constrain output to boolean tensor."));
6969

7070
ONNX_OPERATOR_SET_SCHEMA(
7171
Equal,
@@ -86,11 +86,11 @@ ONNX_OPERATOR_SET_SCHEMA(
8686
"tensor(float16)",
8787
"tensor(float)",
8888
"tensor(double)"},
89-
"Constrains input types to all numeric tensors.")
89+
"Constrain input types to all numeric tensors.")
9090
.TypeConstraint(
9191
"T1",
9292
{"tensor(bool)"},
93-
"Constrains output to boolean tensor."));
93+
"Constrain output to boolean tensor."));
9494

9595
inline void logicalOpInference_opset1(InferenceContext& ctx) {
9696
updateOutputElemType(ctx, 0, TensorProto::BOOL);
@@ -167,11 +167,11 @@ ONNX_OPERATOR_SET_SCHEMA(
167167
.TypeConstraint(
168168
"T",
169169
{"tensor(bool)"},
170-
"Constrains input to boolean tensor.")
170+
"Constrain input to boolean tensor.")
171171
.TypeConstraint(
172172
"T1",
173173
{"tensor(bool)"},
174-
"Constrains output to boolean tensor."));
174+
"Constrain output to boolean tensor."));
175175

176176
ONNX_OPERATOR_SET_SCHEMA(
177177
Or,
@@ -181,11 +181,11 @@ ONNX_OPERATOR_SET_SCHEMA(
181181
.TypeConstraint(
182182
"T",
183183
{"tensor(bool)"},
184-
"Constrains input to boolean tensor.")
184+
"Constrain input to boolean tensor.")
185185
.TypeConstraint(
186186
"T1",
187187
{"tensor(bool)"},
188-
"Constrains output to boolean tensor."));
188+
"Constrain output to boolean tensor."));
189189

190190
ONNX_OPERATOR_SET_SCHEMA(
191191
Xor,
@@ -195,11 +195,11 @@ ONNX_OPERATOR_SET_SCHEMA(
195195
.TypeConstraint(
196196
"T",
197197
{"tensor(bool)"},
198-
"Constrains input to boolean tensor.")
198+
"Constrain input to boolean tensor.")
199199
.TypeConstraint(
200200
"T1",
201201
{"tensor(bool)"},
202-
"Constrains output to boolean tensor."));
202+
"Constrain output to boolean tensor."));
203203

204204
ONNX_OPERATOR_SET_SCHEMA(
205205
Greater,
@@ -209,11 +209,11 @@ ONNX_OPERATOR_SET_SCHEMA(
209209
.TypeConstraint(
210210
"T",
211211
{"tensor(float16)", "tensor(float)", "tensor(double)"},
212-
"Constrains input to float tensors.")
212+
"Constrain input to float tensors.")
213213
.TypeConstraint(
214214
"T1",
215215
{"tensor(bool)"},
216-
"Constrains output to boolean tensor."));
216+
"Constrain output to boolean tensor."));
217217

218218
ONNX_OPERATOR_SET_SCHEMA(
219219
Less,
@@ -223,11 +223,11 @@ ONNX_OPERATOR_SET_SCHEMA(
223223
.TypeConstraint(
224224
"T",
225225
{"tensor(float16)", "tensor(float)", "tensor(double)"},
226-
"Constrains input to float tensors.")
226+
"Constrain input to float tensors.")
227227
.TypeConstraint(
228228
"T1",
229229
{"tensor(bool)"},
230-
"Constrains output to boolean tensor."));
230+
"Constrain output to boolean tensor."));
231231

232232
ONNX_OPERATOR_SET_SCHEMA(
233233
Equal,
@@ -237,11 +237,11 @@ ONNX_OPERATOR_SET_SCHEMA(
237237
.TypeConstraint(
238238
"T",
239239
{"tensor(bool)", "tensor(int32)", "tensor(int64)"},
240-
"Constrains input to integral tensors.")
240+
"Constrain input to integral tensors.")
241241
.TypeConstraint(
242242
"T1",
243243
{"tensor(bool)"},
244-
"Constrains output to boolean tensor."));
244+
"Constrain output to boolean tensor."));
245245

246246
ONNX_OPERATOR_SET_SCHEMA(
247247
Equal,
@@ -251,11 +251,11 @@ ONNX_OPERATOR_SET_SCHEMA(
251251
.TypeConstraint(
252252
"T",
253253
{"tensor(bool)", "tensor(int32)", "tensor(int64)"},
254-
"Constrains input to integral tensors.")
254+
"Constrain input to integral tensors.")
255255
.TypeConstraint(
256256
"T1",
257257
{"tensor(bool)"},
258-
"Constrains output to boolean tensor."));
258+
"Constrain output to boolean tensor."));
259259

260260
ONNX_OPERATOR_SET_SCHEMA(
261261
Greater,
@@ -265,11 +265,11 @@ ONNX_OPERATOR_SET_SCHEMA(
265265
.TypeConstraint(
266266
"T",
267267
{"tensor(float16)", "tensor(float)", "tensor(double)"},
268-
"Constrains input to float tensors.")
268+
"Constrain input to float tensors.")
269269
.TypeConstraint(
270270
"T1",
271271
{"tensor(bool)"},
272-
"Constrains output to boolean tensor."));
272+
"Constrain output to boolean tensor."));
273273

274274
ONNX_OPERATOR_SET_SCHEMA(
275275
Less,
@@ -279,11 +279,11 @@ ONNX_OPERATOR_SET_SCHEMA(
279279
.TypeConstraint(
280280
"T",
281281
{"tensor(float16)", "tensor(float)", "tensor(double)"},
282-
"Constrains input to float tensors.")
282+
"Constrain input to float tensors.")
283283
.TypeConstraint(
284284
"T1",
285285
{"tensor(bool)"},
286-
"Constrains output to boolean tensor."));
286+
"Constrain output to boolean tensor."));
287287

288288

289289
// Shares same doc generator as newer opset 16 version.
@@ -297,11 +297,11 @@ ONNX_OPERATOR_SET_SCHEMA(
297297
.TypeConstraint(
298298
"T",
299299
OpSchema::all_numeric_types(),
300-
"Constrains input types to all numeric tensors.")
300+
"Constrain input types to all numeric tensors.")
301301
.TypeConstraint(
302302
"T1",
303303
{"tensor(bool)"},
304-
"Constrains output to boolean tensor.")
304+
"Constrain output to boolean tensor.")
305305
.TypeAndShapeInferenceFunction(InferenceFunction())
306306
.FunctionBody(R"ONNX(
307307
{
@@ -319,11 +319,11 @@ ONNX_OPERATOR_SET_SCHEMA(
319319
.TypeConstraint(
320320
"T",
321321
OpSchema::all_numeric_types(),
322-
"Constrains input types to all numeric tensors.")
322+
"Constrain input types to all numeric tensors.")
323323
.TypeConstraint(
324324
"T1",
325325
{"tensor(bool)"},
326-
"Constrains output to boolean tensor.")
326+
"Constrain output to boolean tensor.")
327327
.TypeAndShapeInferenceFunction(InferenceFunction())
328328
.FunctionBody(R"ONNX(
329329
{

onnx/defs/math/defs.cc

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -1990,7 +1990,7 @@ static const char* Expand_ver13_doc = R"DOC(
19901990
Broadcast the input tensor following the given shape and the broadcast rule.
19911991
The broadcast rule is similar to numpy.array(input) * numpy.ones(shape):
19921992
Dimensions are right alignment;
1993-
Two corresponding dimension must have the same value, or one of them is equal to 1.
1993+
Two corresponding dimensions must have the same value, or one of them is equal to 1.
19941994
Also, this operator is similar to numpy.broadcast_to(input, shape),
19951995
but the major difference is numpy.broadcast_to() does not allow shape to be smaller than input.size().
19961996
It is possible that the output.shape is not equal to shape, when some dimensions in shape is equal to 1,

onnx/defs/math/old.cc

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -967,7 +967,7 @@ static const char* Expand_ver8_doc = R"DOC(
967967
Broadcast the input tensor following the given shape and the broadcast rule.
968968
The broadcast rule is similar to numpy.array(input) * numpy.ones(shape):
969969
Dimensions are right alignment;
970-
Two corresponding dimension must have the same value, or one of them is equal to 1.
970+
Two corresponding dimensions must have the same value, or one of them is equal to 1.
971971
Also, this operator is similar to numpy.broadcast_to(input, shape),
972972
but the major difference is numpy.broadcast_to() does not allow shape to be smaller than input.size().
973973
It is possible that the output.shape is not equal to shape, when some dimensions in shape is equal to 1,

onnx/defs/nn/defs.cc

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -2074,7 +2074,7 @@ ONNX_OPERATOR_SET_SCHEMA(
20742074
.TypeConstraint(
20752075
"T",
20762076
OpSchema::all_numeric_types(),
2077-
"Constrains input to only numeric types.")
2077+
"Constrain input to only numeric types.")
20782078
.TypeAndShapeInferenceFunction(propagateShapeAndTypeFromFirstInput));
20792079

20802080
static const char* Flatten_ver13_doc = R"DOC(

0 commit comments

Comments
 (0)