This repository was archived by the owner on Mar 8, 2022. It is now read-only.
forked from facebookresearch/impact-driven-exploration
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathutils.py
256 lines (215 loc) · 9.11 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
# Copyright (c) Facebook, Inc. and its affiliates.
# All rights reserved.
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
import torch
import typing
import gym
import threading
from torch import multiprocessing as mp
import logging
import traceback
import os
import numpy as np
from src.core import prof
from src.env_utils import FrameStack, Environment, Minigrid2Image
from src import atari_wrappers as atari_wrappers
from gym_minigrid import wrappers as wrappers
import gym_super_mario_bros
from nes_py.wrappers import JoypadSpace
from gym_super_mario_bros.actions import COMPLEX_MOVEMENT
import vizdoomgym
COMPLETE_MOVEMENT = [
['NOOP'],
['up'],
['down'],
['left'],
['left', 'A'],
['left', 'B'],
['left', 'A', 'B'],
['right'],
['right', 'A'],
['right', 'B'],
['right', 'A', 'B'],
['A'],
['B'],
['A', 'B'],
]
shandle = logging.StreamHandler()
shandle.setFormatter(
logging.Formatter(
'[%(levelname)s:%(process)d %(module)s:%(lineno)d %(asctime)s] '
'%(message)s'))
log = logging.getLogger('torchbeast')
log.propagate = False
log.addHandler(shandle)
log.setLevel(logging.INFO)
Buffers = typing.Dict[str, typing.List[torch.Tensor]]
def create_env(flags):
if 'MiniGrid' in flags.env:
return Minigrid2Image(wrappers.FullyObsWrapper(gym.make(flags.env)))
elif 'Mario' in flags.env:
env = atari_wrappers.wrap_pytorch(
atari_wrappers.wrap_deepmind(
atari_wrappers.make_atari(flags.env, noop=True),
clip_rewards=False,
frame_stack=True,
scale=False,
fire=True))
env = JoypadSpace(env, COMPLETE_MOVEMENT)
return env
else:
env = atari_wrappers.wrap_pytorch(
atari_wrappers.wrap_deepmind(
atari_wrappers.make_atari(flags.env, noop=False),
clip_rewards=False,
frame_stack=True,
scale=False,
fire=False))
return env
def get_batch(free_queue: mp.SimpleQueue,
full_queue: mp.SimpleQueue,
buffers: Buffers,
initial_agent_state_buffers,
flags,
timings,
lock=threading.Lock()):
with lock:
timings.time('lock')
indices = [full_queue.get() for _ in range(flags.batch_size)]
timings.time('dequeue')
batch = {
key: torch.stack([buffers[key][m] for m in indices], dim=1)
for key in buffers
}
initial_agent_state = (
torch.cat(ts, dim=1)
for ts in zip(*[initial_agent_state_buffers[m] for m in indices])
)
timings.time('batch')
for m in indices:
free_queue.put(m)
timings.time('enqueue')
batch = {
k: t.to(device=flags.device, non_blocking=True)
for k, t in batch.items()
}
initial_agent_state = tuple(t.to(device=flags.device, non_blocking=True)
for t in initial_agent_state)
timings.time('device')
return batch, initial_agent_state
def create_buffers(obs_shape, num_actions, flags) -> Buffers:
T = flags.unroll_length
specs = dict(
frame=dict(size=(T + 1, *obs_shape), dtype=torch.uint8),
reward=dict(size=(T + 1,), dtype=torch.float32),
done=dict(size=(T + 1,), dtype=torch.uint8),
episode_return=dict(size=(T + 1,), dtype=torch.float32),
episode_step=dict(size=(T + 1,), dtype=torch.int32),
last_action=dict(size=(T + 1,), dtype=torch.int64),
policy_logits=dict(size=(T + 1, num_actions), dtype=torch.float32),
baseline=dict(size=(T + 1,), dtype=torch.float32),
action=dict(size=(T + 1,), dtype=torch.int64),
episode_win=dict(size=(T + 1,), dtype=torch.int32),
carried_obj=dict(size=(T + 1,), dtype=torch.int32),
carried_col=dict(size=(T + 1,), dtype=torch.int32),
partial_obs=dict(size=(T + 1, 7, 7, 3), dtype=torch.uint8),
episode_state_count=dict(size=(T + 1, ), dtype=torch.float32),
train_state_count=dict(size=(T + 1, ), dtype=torch.float32),
)
buffers: Buffers = {key: [] for key in specs}
for _ in range(flags.num_buffers):
for key in buffers:
buffers[key].append(torch.empty(**specs[key]).share_memory_())
return buffers
def act(i: int, free_queue: mp.SimpleQueue, full_queue: mp.SimpleQueue,
model: torch.nn.Module, buffers: Buffers,
episode_state_count_dict: dict, train_state_count_dict: dict,
initial_agent_state_buffers, flags):
try:
log.info('Actor %i started.', i)
timings = prof.Timings()
gym_env = create_env(flags)
seed = i ^ int.from_bytes(os.urandom(4), byteorder='little')
gym_env.seed(seed)
if flags.num_input_frames > 1:
gym_env = FrameStack(gym_env, flags.num_input_frames)
env = Environment(gym_env, fix_seed=flags.fix_seed, env_seed=flags.env_seed)
env_output = env.initial()
agent_state = model.initial_state(batch_size=1)
agent_output, unused_state = model(env_output, agent_state)
while True:
index = free_queue.get()
if index is None:
break
# Write old rollout end.
for key in env_output:
buffers[key][index][0, ...] = env_output[key]
for key in agent_output:
buffers[key][index][0, ...] = agent_output[key]
for i, tensor in enumerate(agent_state):
initial_agent_state_buffers[index][i][...] = tensor
# Update the episodic state counts
episode_state_key = tuple(env_output['frame'].view(-1).tolist())
if episode_state_key in episode_state_count_dict:
episode_state_count_dict[episode_state_key] += 1
else:
episode_state_count_dict.update({episode_state_key: 1})
buffers['episode_state_count'][index][0, ...] = \
torch.tensor(1 / np.sqrt(episode_state_count_dict.get(episode_state_key)))
# Reset the episode state counts when the episode is over
if env_output['done'][0][0]:
for episode_state_key in episode_state_count_dict:
episode_state_count_dict = dict()
# Update the training state counts if you're doing count-based exploration
if flags.model == 'count':
train_state_key = tuple(env_output['frame'].view(-1).tolist())
if train_state_key in train_state_count_dict:
train_state_count_dict[train_state_key] += 1
else:
train_state_count_dict.update({train_state_key: 1})
buffers['train_state_count'][index][0, ...] = \
torch.tensor(1 / np.sqrt(train_state_count_dict.get(train_state_key)))
# Do new rollout
for t in range(flags.unroll_length):
timings.reset()
with torch.no_grad():
agent_output, agent_state = model(env_output, agent_state)
timings.time('model')
env_output = env.step(agent_output['action'])
timings.time('step')
for key in env_output:
buffers[key][index][t + 1, ...] = env_output[key]
for key in agent_output:
buffers[key][index][t + 1, ...] = agent_output[key]
# Update the episodic state counts
episode_state_key = tuple(env_output['frame'].view(-1).tolist())
if episode_state_key in episode_state_count_dict:
episode_state_count_dict[episode_state_key] += 1
else:
episode_state_count_dict.update({episode_state_key: 1})
buffers['episode_state_count'][index][t + 1, ...] = \
torch.tensor(1 / np.sqrt(episode_state_count_dict.get(episode_state_key)))
# Reset the episode state counts when the episode is over
if env_output['done'][0][0]:
episode_state_count_dict = dict()
# Update the training state counts if you're doing count-based exploration
if flags.model == 'count':
train_state_key = tuple(env_output['frame'].view(-1).tolist())
if train_state_key in train_state_count_dict:
train_state_count_dict[train_state_key] += 1
else:
train_state_count_dict.update({train_state_key: 1})
buffers['train_state_count'][index][t + 1, ...] = \
torch.tensor(1 / np.sqrt(train_state_count_dict.get(train_state_key)))
timings.time('write')
full_queue.put(index)
if i == 0:
log.info('Actor %i: %s', i, timings.summary())
except KeyboardInterrupt:
pass
except Exception as e:
logging.error('Exception in worker process %i', i)
traceback.print_exc()
print()
raise e