-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmain.cpp
155 lines (103 loc) · 3.91 KB
/
main.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
#include "MLP_Network.h"
#include "MLP_Layer.h"
#include "MNIST.h"
int main()
{
int nInputUnit = 784;
int nHiddenUnit = 512;
int nOutputUnit = 10;
int nHiddenLayer = 1;
int nMiniBatch = 10;
float learningRate = 0.1;
int nTrainingSet = 60000;
int nTestSet = 10000;
float errMinimum = 0.01;
int maxEpoch = 1000;
//Allocate
float **inputTraining = new float*[nTrainingSet];
float **desiredOutputTraining = new float*[nTrainingSet];
for(int i = 0;i < nTrainingSet;i++){
inputTraining[i] = new float[nInputUnit];
desiredOutputTraining[i] = new float[nOutputUnit];
}
float **inputTest = new float*[nTestSet];
float **desiredOutputTest = new float*[nTestSet];
for(int i = 0;i < nTestSet;i++){
inputTest[i] = new float[nInputUnit];
desiredOutputTest[i] = new float[nOutputUnit];
}
//MNIST Input Array Allocation and Initialization
MNIST mnist;
mnist.ReadMNIST_Input("/Users/MLP_160713/train-images-idx3-ubyte", nTrainingSet, inputTraining);
mnist.ReadMNIST_Label("/Users/MLP_160713/train-labels-idx1-ubyte",nTrainingSet, desiredOutputTraining);
mnist.ReadMNIST_Input("/Users/MLP_160713/t10k-images-idx3-ubyte",nTestSet, inputTest);
mnist.ReadMNIST_Label("/Users/MLP_160713/t10k-labels-idx1-ubyte",nTestSet, desiredOutputTest);
MLP_Network mlp;
mlp.Allocate(nInputUnit,nHiddenUnit,nOutputUnit,nHiddenLayer,nTrainingSet);
//Start clock
clock_t start, finish;
double elapsed_time;
start = clock();
float initialLR = learningRate;
int epoch = 0;
while (epoch < maxEpoch)
{
float sumError=0;
int batchCount=0;
for (int i = 0; i < nTrainingSet; i++)
{
mlp.ForwardPropagateNetwork(inputTraining[i]);
mlp.BackwardPropagateNetwork( desiredOutputTraining[i]);
sumError += mlp.CostFunction(inputTraining[i],desiredOutputTraining[i]);
if( ((batchCount+1) % nMiniBatch) == 0)
{
mlp.UpdateWeight(learningRate);
batchCount=0;
}
batchCount++;
}
sumError /= nTrainingSet;
cout<<epoch<<" | "<<sumError<<" | "<<errMinimum<<endl;
if (sumError < errMinimum)
break;
learningRate = initialLR/(1+epoch*learningRate); // learning rate progressive decay
++epoch;
}
//Finish clock
finish = clock();
elapsed_time = (double)(finish-start)/CLOCKS_PER_SEC;
cout<<"time: "<<elapsed_time<<" sec"<<endl;
// Test Set Result
cout<<"[Result]"<<endl<<endl;
int sums=0;
float accuracyRate=0.F;
for (int i = 0; i < nTrainingSet; i++)
{
mlp.ForwardPropagateNetwork(inputTraining[i]);
sums += mlp.CalculateResult(inputTraining[i],desiredOutputTraining[i]);
}
accuracyRate = (sums / (float)nTrainingSet) * 100;
cout << "[Training Set]\t"<<"Accuracy Rate: " << accuracyRate << " %"<<endl;
// Test Set Result
sums=0;
accuracyRate=0.F;
for (int i = 0; i < nTestSet; i++)
{
mlp.ForwardPropagateNetwork(inputTest[i]);
sums += mlp.CalculateResult(inputTest[i], desiredOutputTest[i]);
}
accuracyRate = (sums / (float)nTestSet) * 100;
cout << "[Test Set]\t"<<"Accuracy Rate: " << accuracyRate << " %"<<endl;
for (int i = 0; i < nTrainingSet; i++)
{
delete [] desiredOutputTraining[i];
delete [] inputTraining[i];
delete [] desiredOutputTest[i];
delete [] inputTest[i];
}
delete[] inputTraining;
delete[] desiredOutputTraining;
delete[] inputTest;
delete[] desiredOutputTest;
return 0;
}