forked from langchain-ai/langchain
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathhuggingface.py
166 lines (135 loc) Β· 6.27 KB
/
huggingface.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
from typing import Any, Dict, List, Optional
from langchain_core.embeddings import Embeddings
from pydantic import BaseModel, ConfigDict, Field
from ..utils.import_utils import (
IMPORT_ERROR,
is_ipex_available,
is_optimum_intel_available,
is_optimum_intel_version,
)
DEFAULT_MODEL_NAME = "sentence-transformers/all-mpnet-base-v2"
_MIN_OPTIMUM_VERSION = "1.22"
class HuggingFaceEmbeddings(BaseModel, Embeddings):
"""HuggingFace sentence_transformers embedding models.
To use, you should have the ``sentence_transformers`` python package installed.
Example:
.. code-block:: python
from langchain_huggingface import HuggingFaceEmbeddings
model_name = "sentence-transformers/all-mpnet-base-v2"
model_kwargs = {'device': 'cpu'}
encode_kwargs = {'normalize_embeddings': False}
hf = HuggingFaceEmbeddings(
model_name=model_name,
model_kwargs=model_kwargs,
encode_kwargs=encode_kwargs
)
"""
model_name: str = Field(default=DEFAULT_MODEL_NAME, alias="model")
"""Model name to use."""
cache_folder: Optional[str] = None
"""Path to store models.
Can be also set by SENTENCE_TRANSFORMERS_HOME environment variable."""
model_kwargs: Dict[str, Any] = Field(default_factory=dict)
"""Keyword arguments to pass to the Sentence Transformer model, such as `device`,
`prompts`, `default_prompt_name`, `revision`, `trust_remote_code`, or `token`.
See also the Sentence Transformer documentation: https://sbert.net/docs/package_reference/SentenceTransformer.html#sentence_transformers.SentenceTransformer"""
encode_kwargs: Dict[str, Any] = Field(default_factory=dict)
"""Keyword arguments to pass when calling the `encode` method for the documents of
the Sentence Transformer model, such as `prompt_name`, `prompt`, `batch_size`,
`precision`, `normalize_embeddings`, and more.
See also the Sentence Transformer documentation: https://sbert.net/docs/package_reference/SentenceTransformer.html#sentence_transformers.SentenceTransformer.encode"""
query_encode_kwargs: Dict[str, Any] = Field(default_factory=dict)
"""Keyword arguments to pass when calling the `encode` method for the query of
the Sentence Transformer model, such as `prompt_name`, `prompt`, `batch_size`,
`precision`, `normalize_embeddings`, and more.
See also the Sentence Transformer documentation: https://sbert.net/docs/package_reference/SentenceTransformer.html#sentence_transformers.SentenceTransformer.encode"""
multi_process: bool = False
"""Run encode() on multiple GPUs."""
show_progress: bool = False
"""Whether to show a progress bar."""
def __init__(self, **kwargs: Any):
"""Initialize the sentence_transformer."""
super().__init__(**kwargs)
try:
import sentence_transformers # type: ignore[import]
except ImportError as exc:
raise ImportError(
"Could not import sentence_transformers python package. "
"Please install it with `pip install sentence-transformers`."
) from exc
if self.model_kwargs.get("backend", "torch") == "ipex":
if not is_optimum_intel_available() or not is_ipex_available():
raise ImportError(
f'Backend: ipex {IMPORT_ERROR.format("optimum[ipex]")}'
)
if is_optimum_intel_version("<", _MIN_OPTIMUM_VERSION):
raise ImportError(
f"Backend: ipex requires optimum-intel>="
f"{_MIN_OPTIMUM_VERSION}. You can install it with pip: "
"`pip install --upgrade --upgrade-strategy eager "
"`optimum[ipex]`."
)
from optimum.intel import IPEXSentenceTransformer # type: ignore[import]
model_cls = IPEXSentenceTransformer
else:
model_cls = sentence_transformers.SentenceTransformer
self._client = model_cls(
self.model_name, cache_folder=self.cache_folder, **self.model_kwargs
)
model_config = ConfigDict(
extra="forbid",
protected_namespaces=(),
populate_by_name=True,
)
def _embed(
self, texts: list[str], encode_kwargs: Dict[str, Any]
) -> List[List[float]]:
"""
Embed a text using the HuggingFace transformer model.
Args:
texts: The list of texts to embed.
encode_kwargs: Keyword arguments to pass when calling the
`encode` method for the documents of the SentenceTransformer
encode method.
Returns:
List of embeddings, one for each text.
"""
import sentence_transformers # type: ignore[import]
texts = list(map(lambda x: x.replace("\n", " "), texts))
if self.multi_process:
pool = self._client.start_multi_process_pool()
embeddings = self._client.encode_multi_process(texts, pool)
sentence_transformers.SentenceTransformer.stop_multi_process_pool(pool)
else:
embeddings = self._client.encode(
texts,
show_progress_bar=self.show_progress,
**encode_kwargs, # type: ignore
)
if isinstance(embeddings, list):
raise TypeError(
"Expected embeddings to be a Tensor or a numpy array, "
"got a list instead."
)
return embeddings.tolist()
def embed_documents(self, texts: List[str]) -> List[List[float]]:
"""Compute doc embeddings using a HuggingFace transformer model.
Args:
texts: The list of texts to embed.
Returns:
List of embeddings, one for each text.
"""
return self._embed(texts, self.encode_kwargs)
def embed_query(self, text: str) -> List[float]:
"""Compute query embeddings using a HuggingFace transformer model.
Args:
text: The text to embed.
Returns:
Embeddings for the text.
"""
embed_kwargs = (
self.query_encode_kwargs
if len(self.query_encode_kwargs) > 0
else self.encode_kwargs
)
return self._embed([text], embed_kwargs)[0]