-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathgenerateData.py
82 lines (64 loc) · 2.4 KB
/
generateData.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
import torch.utils.data as data
import torch
import os
import os.path
def find_classes(root_dir):
classes = os.listdir(root_dir)
classes.sort()
for item in classes:
if not os.path.isdir(os.path.join(root_dir, item)):
classes.remove(item)
class_to_idx = {classes[i]: i for i in range(len(classes))}
return classes, class_to_idx
def make_dataset(root_dir, class_to_idx):
tensors = []
for target in os.listdir(root_dir):
d = os.path.join(root_dir, target)
if not os.path.isdir(d):
continue
for filename in os.listdir(d):
if filename.endswith('.pyt'):
path = '{0}/{1}'.format(target, filename)
item = (path, class_to_idx[target])
tensors.append(item)
return tensors
def default_loader(path):
return torch.load(path)
class TensorFolder(data.Dataset):
def __init__(self, root, transform=None, target_transform=None,
loader=default_loader):
"""
:param root: path to the root directory of data
:type root: str
:param transform: input transform
:type transform: torch-vision transforms
:param target_transform: target transform
:type target_transform: torch-vision transforms
:param loader: type of data loader
:type loader: function
"""
classes, class_to_idx = find_classes(root)
tensors = make_dataset(root, class_to_idx)
self.root = root
self.tensors = tensors
self.classes = classes
self.class_to_idx = class_to_idx
self.transform = transform
self.target_transform = target_transform
self.loader = loader
# One hot encoding of label
self.class_map = torch.zeros(len(classes), len(classes))
for i in range(len(classes)):
self.class_map[i][i] = 1
def __getitem__(self, index):
path, target = self.tensors[index]
input_tensor = self.loader(os.path.join(self.root, path))
if self.transform is not None:
for i in range(len(input_tensor)):
input_tensor[i] = self.transform(input_tensor[i])
if self.target_transform is not None:
target = self.target_transform(target)
# return input_tensor, self.class_map[target]
return input_tensor, target
def __len__(self):
return len(self.tensors)