-
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathquantum_circuit_feedback.py
143 lines (122 loc) · 4.61 KB
/
quantum_circuit_feedback.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
# Analyze the relationship between binary, base-4, and base-6 states
import numpy as np
from qiskit import QuantumCircuit
from qiskit_aer import Aer
import matplotlib.pyplot as plt
def create_multi_base_circuit():
# Create circuit with 4 qubits
# - 1 sign qubit (positive/negative)
# - 1 qubit for binary encoding
# - 2 qubits for base-4 encoding (which can represent base-6 states)
qc = QuantumCircuit(4, 4)
# Initialize sign qubit in superposition
qc.h(0)
# Create different base encodings
# Binary encoding (qubit 1)
qc.h(1)
# Base-4 encoding (qubits 2-3)
qc.h(2)
qc.h(3)
# Add phase relationships
# Binary to Base-4
qc.cx(1, 2)
# Base-4 to Base-6 mapping through phase
phi = (1 + np.sqrt(5)) / 2 # Golden ratio
qc.cp(2 * np.pi / 6, 2, 3) # Base-6 phase
qc.cp(phi * np.pi / 4, 1, 3) # Cross-base relationship
# Measure all qubits
qc.measure_all()
return qc
# Create and run the circuit
qc = create_multi_base_circuit()
backend = Aer.get_backend('statevector_simulator')
job = backend.run(qc)
result = job.result()
statevector = result.get_statevector()
# Calculate probabilities
probabilities = np.abs(statevector) ** 2
# Analyze state distributions
def analyze_state(binary_state):
binary = format(binary_state, '04b')
sign = 'Positive' if binary[0] == '0' else 'Negative'
binary_val = int(binary[1], 2)
base4_val = int(binary[2:], 2)
base6_val = base4_val % 6
return binary, sign, binary_val, base4_val, base6_val
# Create visualization of the base relationships
plt.figure(figsize=(15, 10))
# Plot 1: Overall state distribution
plt.subplot(2, 2, 1)
plt.bar(range(len(probabilities)), probabilities)
plt.title('Full Quantum State Distribution')
plt.xlabel('State Index')
plt.ylabel('Probability')
# Plot 2: Base-4 to Base-6 mapping
base4_to_base6 = np.zeros(4)
for i in range(4):
base4_to_base6[i] = i % 6
plt.subplot(2, 2, 2)
plt.scatter(range(4), base4_to_base6, c='red', s=100)
plt.title('Base-4 to Base-6 Mapping')
plt.xlabel('Base-4 Value')
plt.ylabel('Base-6 Value')
plt.grid(True)
# Plot 3: Positive vs Negative state distribution
positive_probs = probabilities[:len(probabilities)//2]
negative_probs = probabilities[len(probabilities)//2:]
plt.subplot(2, 2, 3)
plt.bar(range(len(positive_probs)), positive_probs, alpha=0.6, label='Positive')
plt.bar(range(len(negative_probs)), negative_probs, alpha=0.6, label='Negative')
plt.title('Positive vs Negative State Distribution')
plt.xlabel('State Index within Sign')
plt.ylabel('Probability')
plt.legend()
# Plot 4: Base relationship diagram
plt.subplot(2, 2, 4)
plt.text(0.5, 0.8, 'Binary (2 states)\
[0,1]', ha='center', va='center', bbox=dict(facecolor='lightblue'))
plt.text(0.5, 0.5, 'Base-4 (4 states)\
[0,1,2,3]', ha='center', va='center', bbox=dict(facecolor='lightgreen'))
plt.text(0.5, 0.2, 'Base-6 (6 states)\
[0,1,2,3,4,5]', ha='center', va='center', bbox=dict(facecolor='lightpink'))
plt.arrow(0.5, 0.75, 0, -0.15, head_width=0.05, head_length=0.05)
plt.arrow(0.5, 0.45, 0, -0.15, head_width=0.05, head_length=0.05)
plt.title('Base System Relationships')
plt.axis('off')
plt.tight_layout()
plt.show()
# Print analysis
print("Multi-Base System Analysis:")
print("=========================")
print("\
Base System Relationships:")
print("------------------------")
print("Binary: 2 states (0,1) -> Sign determination")
print("Base-4: 4 states (0,1,2,3) -> Intermediate encoding")
print("Base-6: 6 states (0,1,2,3,4,5) -> Final state space")
print("\
State Space Analysis:")
print("-------------------")
print(f"Total quantum states: {len(probabilities)}")
print(f"Positive states: {len(probabilities)//2}")
print(f"Negative states: {len(probabilities)//2}")
print("\
Base Conversion Examples:")
print("----------------------")
significant_states = [(i, p) for i, p in enumerate(probabilities) if p > 0.01]
for state_idx, prob in significant_states:
binary, sign, bin_val, base4_val, base6_val = analyze_state(state_idx)
print(f"State |{binary}>:")
print(f" - {sign}")
print(f" - Binary value: {bin_val}")
print(f" - Base-4 value: {base4_val}")
print(f" - Base-6 mapping: {base6_val}")
print(f" - Probability: {prob:.4f}")
print("\
Feedback Loop Analysis:")
print("---------------------")
print("1. Binary (2 states) provides sign determination")
print("2. Base-4 (4 states) provides intermediate encoding")
print("3. Base-6 (6 states) emerges from Base-4 through modulo mapping")
print("4. The sign (binary) creates positive/negative versions of Base-6 states")
print("5. This creates a natural feedback loop: Binary -> Base-4 -> Base-6 -> Binary")