-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtrain_a3c.py
220 lines (160 loc) · 7.31 KB
/
train_a3c.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
import argparse
import os
import re
import numpy as np
import torch
import torch.multiprocessing as _mp
from torch import nn
from torch.nn import functional as F
from torch.utils.tensorboard import SummaryWriter
import environment
import tpu
from models import A3C
from optim import SharedAdam
from utils.helper import evaluate_A3C_lstm
def get_args():
ap = argparse.ArgumentParser()
ap.add_argument("-e", "--environment", default="BreakoutDeterministic-v4", help="Envirement to play")
ap.add_argument("-l", "--log_dir", default="logs", help="Logs dir for tensorboard")
ap.add_argument("-t", "--train_dir", default="train_dir", help="Checkpoint directory")
ap.add_argument("-c", "--checkpoint", default=None, help="Checkpoint for agent")
ap.add_argument("--tpu", action='store_true', help="Enable TPU")
ap.add_argument("--lr", default=1e-5, type=float, help="Learning Rate")
ap.add_argument("--max_grad_norm", default=50.0, type=float, help="Gradient clipping")
ap.add_argument("--num_processes", default=4, type=int, help="Number of parallel environments")
ap.add_argument("--value_loss_coef", default=0.5, type=float, help="value loss coef")
ap.add_argument("--gae_lambda", default=1.0, type=float, help="gae lambda")
ap.add_argument("--entropy_coef", default=0.01, type=float, help="entropy coef")
ap.add_argument("--gamma", default=0.99, type=float, help="Discounting factor")
ap.add_argument("--total_steps", default=int(10e6), type=int, help="Training steps")
ap.add_argument("--num_steps", default=20, type=int, help="number steps for update")
ap.add_argument("--loss_freq", default=50, type=int, help="loss frequency")
ap.add_argument("--eval_freq", default=2500, type=int, help="Evalualtion frequency")
ap.add_argument("--lstm", action='store_true', help="Enable LSTM")
ap.add_argument("--device", default=torch.device('cuda' if torch.cuda.is_available() else 'cpu'),
help="Device for training")
opt = ap.parse_args()
return opt
def train(make_env, shared_agent, optim, device, opt, process_number):
total_steps = opt.total_steps
num_steps = opt.num_steps
loss_freq = opt.loss_freq
eval_freq = opt.eval_freq
max_grad_norm = opt.max_grad_norm
gamma = opt.gamma
checkpoint_path = opt.train_dir
if process_number == 0 and not os.path.exists(checkpoint_path):
os.mkdir(checkpoint_path)
step = 0
evaluate = evaluate_A3C_lstm
env = make_env(clip_rewards=False, lstm=opt.lstm)
state = env.reset()
grad_norm = 0
hidden_unit = None
n_actions = env.action_space.n
agent = A3C(n_actions=n_actions, lstm=opt.lstm)
agent = agent.to(device)
shared_agent = shared_agent.to(device)
agent.train()
shared_agent.train()
if opt.checkpoint:
agent.load_state_dict(torch.load(opt.checkpoint, map_location=torch.device(device)))
step = int(re.findall(r'\d+', opt.checkpoint)[-1])
if process_number == 0:
writer = SummaryWriter(opt.log_dir)
episode_length = 0
episode_reward = 0
for step in range(step, total_steps + 1):
agent.load_state_dict(shared_agent.state_dict())
log_policies = []
values = []
rewards = []
entropies = []
for _ in range(num_steps):
(logits, value), hidden_unit = agent([state], hidden_unit)
policy = F.softmax(logits, dim=1)
log_policy = F.log_softmax(logits, dim=1)
entropy = -(policy * log_policy).sum(1, keepdim=True)
action = agent.sample_actions((logits, value))
state, reward, done, _ = env.step(action.squeeze())
episode_reward += reward
episode_length += 1
if done:
state = env.reset()
hidden_unit = None
if process_number == 0:
writer.add_scalar("Episode/Length", episode_length, step)
writer.add_scalar("Episode/Reward", episode_reward, step)
episode_length = 0
episode_reward = 0
values.append(value)
log_policies.append(log_policy.gather(1, action))
rewards.append(np.sign(reward))
entropies.append(entropy)
if done:
break
R = torch.zeros((1, 1), dtype=torch.float).to(device)
if not done:
(_, R), _ = agent([state], hidden_unit)
gae = torch.zeros((1, 1), dtype=torch.float).to(device)
actor_loss = 0
critic_loss = 0
entropy_loss = 0
next_value = R
for value, log_policy, reward, entropy in list(zip(values, log_policies, rewards, entropies))[::-1]:
gae = gae * gamma * opt.gae_lambda
gae = gae + reward + gamma * next_value - value
next_value = value
actor_loss = actor_loss + log_policy * gae.detach()
R = R * gamma + reward
critic_loss = critic_loss + (R - value) ** 2 / 2
entropy_loss = entropy_loss + entropy
policy_loss = -actor_loss - opt.entropy_coef * entropy_loss
total_loss = policy_loss + opt.value_loss_coef * critic_loss
optim.zero_grad()
total_loss.backward()
grad_norm = nn.utils.clip_grad_norm_(agent.parameters(), max_grad_norm)
for local_param, global_param in zip(agent.parameters(), shared_agent.parameters()):
if global_param.grad is not None:
break
global_param._grad = local_param.grad
optim.step()
if process_number == 0 and step % loss_freq == 0:
loss = total_loss.data.cpu().item()
print("[{}] Loss: {} process: {}".format(step, loss, process_number + 1))
writer.add_scalar("Training/Loss", loss, step)
writer.add_scalar("Training/Grad norm", grad_norm, step)
writer.add_scalar("Training/Policy entropy", entropy_loss, step)
if process_number == 0 and step % eval_freq == 0:
mean_rw = evaluate(make_env(clip_rewards=False, lstm=opt.lstm), agent)
writer.add_scalar("Mean reward", mean_rw, step)
writer.close()
torch.save(agent.state_dict(), os.path.join(checkpoint_path, "agent_{}.pth".format(step)))
if process_number == 0:
torch.save(agent.state_dict(), os.path.join(checkpoint_path, "agent_{}.pth".format(total_steps)))
def main():
opt = get_args()
assert opt.environment in environment.ENV_DICT.keys(), \
"Unsupported environment: {} \nSupported environemts: {}".format(opt.environment, environment.ENV_DICT.keys())
if opt.tpu:
device = tpu.get_TPU()
else:
device = opt.device
mp = _mp.get_context("spawn")
ENV = environment.ENV_DICT[opt.environment]
env = ENV.make_env(lstm=opt.lstm)
state_shape = env.observation_space.shape
n_actions = env.action_space.n
shared_agent = A3C(n_actions=n_actions, lstm=opt.lstm).to(device)
shared_agent.share_memory()
optim = SharedAdam(shared_agent.parameters(), lr=opt.lr)
optim.share_memory()
processes = []
for rank in range(0, opt.num_processes):
p = mp.Process(target=train, args=(ENV.make_env, shared_agent, optim, device, opt, rank))
p.start()
processes.append(p)
for p in processes:
p.join()
if __name__ == '__main__':
main()