forked from maahn/pyOptimalEstimation
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsetup.py
52 lines (45 loc) · 1.92 KB
/
setup.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
# -*- coding: utf-8 -*-
'''
pyOptimalEstimation
Copyright (C) 2014-19 Maximilian Maahn, CU Boulder
https://github.com/maahn/pyOptimalEstimation
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
'''
from setuptools import setup
import io
# read the contents of your README file
from os import path
this_directory = path.abspath(path.dirname(__file__))
with io.open(path.join(this_directory, 'README.md'), encoding='utf-8') as f:
long_description = f.read()
if __name__ == "__main__":
setup(
name='pyOptimalEstimation',
use_scm_version=True,
packages=['pyOptimalEstimation', ],
license='GNU General Public License 3',
author="Maximilian Maahn",
classifiers=[
"Development Status :: 5 - Production/Stable",
"License :: OSI Approved :: GNU General Public License v3 (GPLv3)",
"Operating System :: OS Independent",
"Programming Language :: Python :: 3",
'Intended Audience :: Science/Research',
'Topic :: Scientific/Engineering',
],
install_requires=['numpy', 'matplotlib', 'pandas', 'scipy', 'importlib-metadata'],
setup_requires=['setuptools_scm','setuptools_scm_git_archive'],
long_description=long_description,
long_description_content_type='text/markdown',
url='https://github.com/maahn/pyOptimalEstimation',
)