-
Notifications
You must be signed in to change notification settings - Fork 2.7k
/
Copy pathProgram.cs
80 lines (62 loc) · 2.5 KB
/
Program.cs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
using AutoMLTrialRunner;
using AutoMLTrialRunner.AutoMLTrialRunner;
using Microsoft.ML;
using Microsoft.ML.AutoML;
using Microsoft.ML.Data;
using Microsoft.ML.SearchSpace;
using Microsoft.ML.Recommender;
using static Microsoft.ML.DataOperationsCatalog;
using Microsoft.ML.Trainers;
using System.Reflection.Emit;
using Microsoft.ML.TorchSharp;
// Initialize MLContext
MLContext ctx = new MLContext();
// (Recommended) Use GPU
ctx.GpuDeviceId = 0;
ctx.FallbackToCpu = false;
var dataPath = Path.GetFullPath(@"..\..\..\..\Data\yelp_labelled.txt");
var textColumnName = "col0";
// Infer column information
ColumnInferenceResults columnInference =
ctx.Auto().InferColumns(dataPath, labelColumnIndex: 1, groupColumns: false);
// Create text loader
TextLoader loader = ctx.Data.CreateTextLoader(columnInference.TextLoaderOptions);
// Load data into IDataView
IDataView data = loader.Load(dataPath);
// Split into train (80%), validation (20%) sets
TrainTestData trainValidationData = ctx.Data.TrainTestSplit(data, testFraction: 0.2);
// Initialize serach space
var tcSearchSpace = new SearchSpace<TCOption>();
// Create factory for Text Classification trainer
var tcFactory = (MLContext ctx, TCOption param) =>
{
return ctx.MulticlassClassification.Trainers.TextClassification(
sentence1ColumnName: textColumnName,
batchSize:param.BatchSize);
};
// Create text classification sweepable estimator
var tcEstimator =
ctx.Auto().CreateSweepableEstimator(tcFactory, tcSearchSpace);
// Define text classification pipeline
var pipeline =
ctx.Transforms.Conversion.MapValueToKey(columnInference.ColumnInformation.LabelColumnName)
.Append(tcEstimator);
// Initialize custom text classification runner
var tcRunner = new TCRunner(context: ctx, data: trainValidationData, pipeline: pipeline);
// Create AutoML experiment
AutoMLExperiment experiment = ctx.Auto().CreateExperiment();
// Configure AutoML experiment
experiment
.SetPipeline(pipeline)
.SetMulticlassClassificationMetric(MulticlassClassificationMetric.MicroAccuracy, labelColumn: columnInference.ColumnInformation.LabelColumnName)
.SetTrainingTimeInSeconds(120)
.SetDataset(trainValidationData)
.SetTrialRunner(tcRunner);
// Log experiment trials
var monitor = new AutoMLMonitor(pipeline);
experiment.SetMonitor(monitor);
// Run experiment
var tcCts = new CancellationTokenSource();
TrialResult textClassificationExperimentResults = await experiment.RunAsync(tcCts.Token);
// Get model
var model = textClassificationExperimentResults.Model;