Skip to content

Commit a90329d

Browse files
authored
Merge pull request #74 from dotnet/update-readme
Update README
2 parents a9ab32b + 9f36ed6 commit a90329d

File tree

1 file changed

+20
-27
lines changed

1 file changed

+20
-27
lines changed

README.md

Lines changed: 20 additions & 27 deletions
Original file line numberDiff line numberDiff line change
@@ -6,13 +6,7 @@ Welcome to the home of .NET interactive notebooks for C#!
66

77
### VS Code
88
1. Download the .NET Coding Pack for VS Code for [Windows](https://aka.ms/dotnet-coding-pack-win) or [macOS](https://aka.ms/dotnet-coding-pack-mac).
9-
2. Install the [.NET Interactive Notebooks](https://marketplace.visualstudio.com/items?itemName=ms-dotnettools.dotnet-interactive-vscode) extension.
10-
11-
### Visual Studio
12-
1. Download and install [Visual Studio 2022](https://visualstudio.microsoft.com/downloads/)
13-
2. Download and install [Notebook Editor Extension](https://marketplace.visualstudio.com/items?itemName=MLNET.notebook)
14-
15-
For more information and resources, visit [Learn to code C#](https://dotnet.microsoft.com/learntocode).
9+
2. Install the [Polyglot Notebooks](https://marketplace.visualstudio.com/items?itemName=ms-dotnettools.dotnet-interactive-vscode) extension.
1610

1711
## C# 101
1812

@@ -38,35 +32,34 @@ Download or clone this repo and open the `csharp-101` folder in VS Code to get s
3832

3933
## Machine Learning
4034

41-
Download or clone this repo and open the `machine-learning` folder in Visual Studio 2022 to get started with the machine-learning notebooks. Or, if you want just tap on one of the Notebook links below and automatically have it open in Visual Studio!
35+
Download or clone this repo and open the `machine-learning` folder to get started with the machine-learning notebooks.
4236

43-
**Links below require [Visual Studio 2022](https://visualstudio.microsoft.com/downloads/) and [Notebook Editor Extension](https://marketplace.visualstudio.com/items?itemName=MLNET.notebook) 0.3.4 or greater**
4437

4538
### Getting Started Series
4639

47-
| # | Topic | VS Notebook Link | Github Link |
48-
|---|--------------------------------------------|------------------------------------------------|-------------|
49-
1 | Intro to Machine Learning | [01 Notebook](https://ntbk.io/ml-01-intro) | [01 Notebook](https://github.com/dotnet/csharp-notebooks/blob/main/machine-learning/01-Intro%20to%20Machine%20Learning.ipynb)
50-
2 | Data Prep and Feature Engineering | [02 Notebook](https://ntbk.io/ml-02-data) | [02 Notebook](https://github.com/dotnet/csharp-notebooks/blob/main/machine-learning/02-Data%20Preparation%20and%20Feature%20Engineering.ipynb)
51-
3 | Training and AutoML | [03 Notebook](https://ntbk.io/ml-03-training) | [03 Notebook](https://github.com/dotnet/csharp-notebooks/blob/main/machine-learning/03-Training%20and%20AutoML.ipynb)
52-
4 | Model Evaluation | [04 Notebook](https://ntbk.io/ml-04-evaluation)| [04 Notebook](https://github.com/dotnet/csharp-notebooks/blob/main/machine-learning/04-Model%20Evaluation.ipynb)
40+
| # | Topic | Notebook Link |
41+
|---|--------------------------------------------|------------------------------------------------|
42+
| 1 | Intro to Machine Learning | [01 Notebook](https://github.com/dotnet/csharp-notebooks/blob/main/machine-learning/01-Intro%20to%20Machine%20Learning.ipynb)
43+
| 2 | Data Prep and Feature Engineering | [02 Notebook](https://github.com/dotnet/csharp-notebooks/blob/main/machine-learning/02-Data%20Preparation%20and%20Feature%20Engineering.ipynb)
44+
| 3 | Training and AutoML | [03 Notebook](https://github.com/dotnet/csharp-notebooks/blob/main/machine-learning/03-Training%20and%20AutoML.ipynb)
45+
| 4 | Model Evaluation | [04 Notebook](https://github.com/dotnet/csharp-notebooks/blob/main/machine-learning/04-Model%20Evaluation.ipynb)
5346

5447
### End to End (E2E) Notebooks - examples of the entire ML process.
55-
| # | Topic | VS Notebook Link | Github Link |
56-
|---|--------------------------------------------|---------------------------------------------------------------------------|-------------|
57-
E2E | Classification using AutoML (Iris Dataset) | [Iris E2E AutoML](https://ntbk.io/ml-e2e-iris) | [Iris E2E AutoML](https://github.com/dotnet/csharp-notebooks/blob/main/machine-learning/E2E-Classification%20with%20Iris%20Dataset.ipynb)
58-
E2E | Forecasting using Regression (Luna Dataset)| [Luna E2E Regression](https://ntbk.io/ml-e2e-luna-regression) | [Luna E2E Regression](https://github.com/dotnet/csharp-notebooks/blob/main/machine-learning/E2E-Forecasting%20using%20Regression%20with%20Luna%20Dataset.ipynb)
59-
E2E | Forecasting using SSA (Luna Dataset) | [Luna E2E SSA](https://ntbk.io/ml-e2e-luna-ssa) | [Luna E2E SSA](https://github.com/dotnet/csharp-notebooks/blob/main/machine-learning/E2E-Forecasting%20using%20SSA%20with%20Luna%20Dataset.ipynb)
60-
E2E | Regression using AutoML (Taxi Dataset) | [Taxi E2E AutoML](https://ntbk.io/ml-e2e-taxi) | [Taxi E2E AutoML](https://github.com/dotnet/csharp-notebooks/blob/main/machine-learning/E2E-Regression%20with%20Taxi%20Dataset.ipynb)
61-
E2E | Text Classification API (Yelp Dataset) | [Text Classification API](https://ntbk.io/ml-e2e-text-classification-api) | [Text Classification API](https://github.com/dotnet/csharp-notebooks/blob/main/machine-learning/E2E-Text-Classification-API-with-Yelp-Dataset.ipynb)
48+
| # | Topic | Github Link |
49+
|---|--------------------------------------------|--------------|
50+
E2E | Classification using AutoML (Iris Dataset) | [Iris E2E AutoML](https://github.com/dotnet/csharp-notebooks/blob/main/machine-learning/E2E-Classification%20with%20I
51+
E2E | Forecasting using Regression (Luna Dataset)| [Luna E2E Regression](https://github.com/dotnet/csharp-notebooks/blob/main/machine-learning/E2E-Forecasting%20using%
52+
E2E | Forecasting using SSA (Luna Dataset) | [Luna E2E SSA](https://github.com/dotnet/csharp-notebooks/blob/main/machine-learning/E2E-Forecasting%20using%20SSA
53+
E2E | Regression using AutoML (Taxi Dataset) | [Taxi E2E AutoML](https://github.com/dotnet/csharp-notebooks/blob/main/machine-learning/E2E-Regression%20with%20Taxi%
54+
E2E | Text Classification API (Yelp Dataset) | [Text Classification API](https://github.com/dotnet/csharp-notebooks/blob/main/machine-learning/E2E-Text-Classification-API-with-Yelp-Dataset.ipynb)
6255

6356

6457
### Reference Notebooks
65-
| # | Topic | VS Notebook Link | Github Link |
66-
|---|--------------------------------------------|-------------------------------------------------------|-------------|
67-
REF | Data Processing with DataFrame |[Data Frame](https://ntbk.io/ml-ref-data-frame) | [Data Frame](https://github.com/dotnet/csharp-notebooks/blob/main/machine-learning/REF-Data%20Processing%20with%20DataFrame.ipynb)
68-
REF | Graphs and Visualizations |[Visualizations](https://ntbk.io/ml-ref-visualizations)| [Visualizations](https://github.com/dotnet/csharp-notebooks/blob/main/machine-learning/REF-Graphs%20and%20Visualizations.ipynb)
69-
REF | Kaggle Competitions (Titanic Dataset) |[Kaggle](https://ntbk.io/ml-ref-kaggle-titanic) | [Kaggle](https://github.com/dotnet/csharp-notebooks/blob/main/machine-learning/REF-Kaggle%20with%20Titanic%20Dataset.ipynb)
58+
| # | Topic | Github Link |
59+
|---|--------------------------------------------|-------------|
60+
REF | Data Processing with DataFrame | [Data Frame](https://github.com/dotnet/csharp-notebooks/blob/main/machine-learning/REF-Data%20Processing%20with%20DataFrame.ipynb)
61+
REF | Graphs and Visualizations | [Visualizations](https://github.com/dotnet/csharp-notebooks/blob/main/machine-learning/REF-Graphs%20and%20Visualizations.ipynb)
62+
REF | Kaggle Competitions (Titanic Dataset) | [Kaggle](https://github.com/dotnet/csharp-notebooks/blob/main/machine-learning/REF-Kaggle%20with%20Titanic%20Dataset.ipynb)
7063

7164
## .NET Foundation
7265

0 commit comments

Comments
 (0)