-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathextract_s3d_features.py
227 lines (176 loc) · 9.35 KB
/
extract_s3d_features.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
# Extract S3D features
import argparse
import sys
from pathlib import Path
import cv2
import numpy as np
import pandas as pd
import torch
import torchvision
from torch.utils.data import Dataset, DataLoader
from torchvision.transforms import transforms
from tqdm import tqdm
import torchvision.transforms.functional as F
import dataset
from run import to_cuda
from s3dg import S3D
def create_parser():
parser = argparse.ArgumentParser(add_help=True, description='Extract S3D features')
parser.add_argument('train_df_path', type=Path, help='Path to the train set''s csv file')
parser.add_argument('test_df_path', type=Path, help='Path to the test set''s csv file')
parser.add_argument('frames_path', type=Path, help='Path to the extracted frames')
parser.add_argument('output_path', type=Path, help='Where you want to save the features')
parser.add_argument('s3d_init_folder', type=Path, help='Path to the S3D checkpoint folder. You can find the model '
'weights at https://github.com/antoine77340/S3D_HowTo100M')
parser.add_argument('--stack_size', default=16, type=int, help='Number of frames to be stacked as input to S3D')
parser.add_argument('--stride', default=1, type=int, help='Stride in seconds')
parser.add_argument('--batch_size', default=64, type=int, help='Batch size to extract features in parallel')
parser.add_argument('--workers', default=8, type=int, help='Number of workers for the data loader')
parser.add_argument('--jpg_digits', default=6, type=int, help='Number of digits in the JPG frames'' file name')
parser.add_argument('--jpg_prefix', default='frame_', help='Prefix of the JPG frames'' file name')
parser.add_argument('--rgb_height', default=226, type=int, help='Height of the frame, in pixels')
parser.add_argument('--crop_size', default=224, type=int, help='Size of the central crop to be fed to S3D, '
'in pixels')
return parser
class VideoCenterCrop(torchvision.transforms.CenterCrop):
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
def __call__(self, stack):
return torch.stack([F.center_crop(s, self.size) for s in stack])
class DatasetsForFeaturesExtraction(Dataset):
def __init__(self, df, frames_path, stride, stack_size, jpg_digits=6, jpg_prefix='frame_', rgb_height=226,
crop_size=224):
self.frames_path = frames_path
self.stride = stride
self.stack_size= stack_size
self.samples_per_seg = 1
self.df_original = df
self.df = self.expand_along_time()
self.jpg_prefix = jpg_prefix
self.jpg_digits = jpg_digits
self.rgb_height = rgb_height
self.transforms = transforms.Compose([VideoCenterCrop(crop_size)])
def expand_along_time(self):
rows = []
for i, row in tqdm(self.df_original.iterrows(), desc='Expanding df', total=len(self.df_original),
file=sys.stdout):
start_sec, end_sec = row['start_time'], row['end_time']
duration_sec = end_sec - start_sec + 1
max_n = row['rgb_frames']
fps = np.round(max_n / duration_sec)
frequency_fps = int(self.stride * fps)
for s in np.arange(1, max_n, frequency_fps):
row_t = dict(row)
fe = min(s + frequency_fps - 1, max_n - 1)
row_t['start_frame'] = s
row_t['rgb_frames'] = fe
rows.append(row_t)
return pd.DataFrame(rows)
def build_rgb_path(self, segment, frame_number):
seg_id = dataset.Dataset.get_seg_id(segment)
return self.frames_path / seg_id / f'{self.jpg_prefix}{str(frame_number).zfill(self.jpg_digits)}.jpg'
def load_rgb_frames(self, segment, frame_samples):
frames = []
for frame_number in frame_samples:
frame_path = self.build_rgb_path(segment, frame_number)
img = cv2.imread(str(frame_path)) # IMPORTANT: cv images are BGR!
assert img is not None, f'Could not load img {frame_path}'
w, h, c = img.shape
if w < self.rgb_height or h < self.rgb_height:
d = float(self.rgb_height) - min(w, h)
sc = 1 + d / min(w, h)
img = cv2.resize(img, dsize=(0, 0), fx=sc, fy=sc)
img = (img / 255.)
frames.append(img)
frames = np.asarray(frames, dtype=np.float32)
frames = torch.from_numpy(frames.transpose([3, 0, 1, 2]))
return frames
def __len__(self):
return len(self.df)
def __getitem__(self, item):
segment = self.df.iloc[item]
frame_samples = np.linspace(segment.start_frame, segment.rgb_frames, self.stack_size, dtype=int)
frames = self.load_rgb_frames(segment, frame_samples)
frames = self.transforms(frames)
metadata = {k: getattr(segment, k) for k in ('seg_id', 'start_time', 'end_time', 'clustered_adverb',
'clustered_verb') if hasattr(segment, k)}
metadata['frame_samples'] = frame_samples
return frames, metadata
def setup_data(args):
train_df = pd.read_csv(args.train_df_path)
test_df = pd.read_csv(args.test_df_path)
train_dataset = DatasetsForFeaturesExtraction(train_df, args.frames_path, args.stride, args.stack_size,
jpg_digits=args.jpg_digits, jpg_prefix=args.jpg_prefix,
rgb_height=args.rgb_height, crop_size=args.crop_size)
test_dataset = DatasetsForFeaturesExtraction(test_df, args.frames_path, args.stride, args.stack_size,
jpg_digits=args.jpg_digits, jpg_prefix=args.jpg_prefix,
rgb_height=args.rgb_height, crop_size=args.crop_size)
train_loader = DataLoader(train_dataset, batch_size=args.batch_size, shuffle=False,
pin_memory=True, num_workers=args.workers)
test_loader = DataLoader(test_dataset, batch_size=args.batch_size, shuffle=False,
pin_memory=True, num_workers=args.workers)
return train_loader, test_loader
def setup_s3d(args):
init_dict_path = args.s3d_init_folder / 's3d_dict.npy'
s3d_checkpoint_path = args.s3d_init_folder / 's3d_howto100m.pth'
print(f'Loading S3D weights from {args.s3d_init_folder}')
original_classes = 512
s3d = S3D(init_dict_path, num_classes=original_classes)
s3d.load_state_dict(torch.load(s3d_checkpoint_path))
if torch.cuda.is_available():
s3d = s3d.cuda()
s3d = torch.nn.DataParallel(s3d)
return s3d
def collate_features(output, metadata):
collated_output = {}
collated_metadata = {}
vids = np.array(metadata['seg_id'])
u_ids = np.unique(vids)
metadata_np = {k: np.array(v) for k, v in metadata.items()}
for vid in u_ids:
idx = vid == vids
vf = {k: v[idx] for k, v in output.items()}
collated_output[vid] = vf
collated_metadata[vid] = {k: v[idx] for k, v in metadata_np.items() if k != 'seg_id'}
return collated_output, collated_metadata
def extract_features(model, train_loader, test_loader, args):
model.eval()
with torch.no_grad():
for set_, loader in zip(('train', 'test'), (train_loader, test_loader)):
set_output = {}
set_metadata = {}
for frames, batch_metadata in tqdm(loader, desc=f'Extracting features for {set_} set', file=sys.stdout):
frames = to_cuda((frames, ))[0]
batch_output = model(frames)
# renaming keys with better names
batch_output['s3d_features'] = batch_output.pop('mixed_5c')
batch_output['video_embedding_joint_space'] = batch_output.pop('video_embedding')
for k, v in batch_output.items():
if k not in set_output:
set_output[k] = []
set_output[k].append(v.detach())
for k, v in batch_metadata.items():
if k not in set_metadata:
set_metadata[k] = []
if isinstance(v, list):
set_metadata[k].extend(v)
elif isinstance(v, torch.Tensor):
set_metadata[k].extend(v.tolist())
else:
raise RuntimeError(f'Define how to combine metadata for type {type(v)}')
set_output = {k: torch.cat([x.unsqueeze(0) if x.ndim == 1 else x for x in v], dim=0) if v else None
for k, v in set_output.items()}
collated_output, collated_metadata = collate_features(set_output, set_metadata)
f_path = args.output_path / f'stack={args.stack_size}_stride={args.stride}' / f'{set_}.pth'
f_path.parent.mkdir(parents=True, exist_ok=True)
f_dict = dict(features=collated_output, metadata=collated_metadata)
torch.save(f_dict, f_path)
print(f'Features for set {set_} saved to {f_path}')
def main():
parser = create_parser()
args = parser.parse_args()
train_loader, test_loader = setup_data(args)
s3d = setup_s3d(args)
extract_features(s3d, train_loader, test_loader, args)
if __name__ == '__main__':
main()