-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathconstants.py
60 lines (50 loc) · 2.83 KB
/
constants.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
import enum, os
from models import LinearRegression, DecisionTree, LassoRegression
from DataSetTypes import *
class ModelID(enum.StrEnum):
LINEAR_REGRESSION_18 = enum.auto()
LINEAR_REGRESSION_19 = enum.auto()
LINEAR_REGRESSION_29 = enum.auto()
DECISION_TREE_18 = enum.auto()
DECISION_TREE_19 = enum.auto()
DECISION_TREE_29 = enum.auto()
LASSO_REGRESSION_18 = enum.auto()
LASSO_REGRESSION_19 = enum.auto()
LASSO_REGRESSION_29 = enum.auto()
class ModelType(enum.Enum):
LINEAR_REGRESSION = enum.auto()
DECISION_TREE = enum.auto()
LASSO_REGRESSION = enum.auto()
MODEL_PATHS: dict[ModelID, str] = {
ModelID.LINEAR_REGRESSION_18: './model_pkls/lin_reg18_model.pkl',
ModelID.LINEAR_REGRESSION_19: './model_pkls/lin_reg19_model.pkl',
ModelID.LINEAR_REGRESSION_29: './model_pkls/lin_reg29_model.pkl',
ModelID.DECISION_TREE_18: './model_pkls/dec_trees18_model.pkl',
ModelID.DECISION_TREE_19: './model_pkls/dec_trees19_model.pkl',
ModelID.DECISION_TREE_29: './model_pkls/dec_trees29_model.pkl',
ModelID.LASSO_REGRESSION_18: './model_pkls/lasso18_model.pkl',
ModelID.LASSO_REGRESSION_19: './model_pkls/lasso19_model.pkl',
ModelID.LASSO_REGRESSION_29: './model_pkls/lasso29_model.pkl',
}
MODEL_TYPE_TO_TYPE_OBJ: dict[ModelType, type] = {
ModelType.LINEAR_REGRESSION: LinearRegression.LinearRegression,
ModelType.DECISION_TREE: DecisionTree.DecisionTree,
ModelType.LASSO_REGRESSION: LassoRegression.LassoRegression
}
MODEL_INFO: dict[ModelID, (type, DataSetNorm, DataSetLevel)] = {
ModelID.LINEAR_REGRESSION_18: (ModelType.LINEAR_REGRESSION, DataSetNorm.NORMALIZED, DataSetLevel.LEVEL_18),
ModelID.LINEAR_REGRESSION_19: (ModelType.LINEAR_REGRESSION, DataSetNorm.NORMALIZED, DataSetLevel.LEVEL_19),
ModelID.LINEAR_REGRESSION_29: (ModelType.LINEAR_REGRESSION, DataSetNorm.NORMALIZED, DataSetLevel.LEVEL_29),
ModelID.DECISION_TREE_18: (ModelType.DECISION_TREE, DataSetNorm.NOT_NORMALIZED, DataSetLevel.LEVEL_18),
ModelID.DECISION_TREE_19: (ModelType.DECISION_TREE, DataSetNorm.NOT_NORMALIZED, DataSetLevel.LEVEL_19),
ModelID.DECISION_TREE_29: (ModelType.DECISION_TREE, DataSetNorm.NOT_NORMALIZED, DataSetLevel.LEVEL_29),
ModelID.LASSO_REGRESSION_18: (ModelType.LASSO_REGRESSION, DataSetNorm.NORMALIZED, DataSetLevel.LEVEL_18),
ModelID.LASSO_REGRESSION_19: (ModelType.LASSO_REGRESSION, DataSetNorm.NORMALIZED, DataSetLevel.LEVEL_19),
ModelID.LASSO_REGRESSION_29: (ModelType.LASSO_REGRESSION, DataSetNorm.NORMALIZED, DataSetLevel.LEVEL_29),
}
DATASET_PATHS: dict[DataSetLevel, str] = {
DataSetLevel.LEVEL_18: 'datasets/level_18_local_ptp.csv',
DataSetLevel.LEVEL_19: 'datasets/level_19_local_ptp.csv',
DataSetLevel.LEVEL_29: 'datasets/level_29_local_ptp.csv',
}
SERVER_PORT = int(os.getenv('PORT', 8000))