-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathutils.py
269 lines (242 loc) · 15.3 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
# coding: UTF-8
import os
import torch
import numpy as np
import pickle as pkl
from tqdm import tqdm
import time
from datetime import timedelta
import pandas as pd
from tool import clean_special_chars, clean_contractions
# ## 进度条初始化
tqdm.pandas()
MAX_VOCAB_SIZE = 10000 # 词表长度限制
UNK, PAD = '<UNK>', '<PAD>' # 未知字,padding符号
def build_vocab(file_path, max_size, min_freq):
df = pd.read_csv(file_path, encoding='utf-8', sep=',')
df['Text'] = df['Text'].fillna('')
sentences = df['Text'].apply(lambda x: x.lower())
contraction_mapping = {"here's": "here is", "it's": "it is", "ain't": "is not", "aren't": "are not",
"can't": "cannot", "'cause": "because", "could've": "could have", "couldn't": "could not",
"didn't": "did not", "doesn't": "does not", "don't": "do not", "hadn't": "had not",
"hasn't": "has not", "haven't": "have not", "he'd": "he would", "he'll": "he will",
"he's": "he is", "how'd": "how did", "how'd'y": "how do you", "how'll": "how will",
"how's": "how is", "I'd": "I would", "I'd've": "I would have", "I'll": "I will",
"I'll've": "I will have", "I'm": "I am", "I've": "I have", "i'd": "i would",
"i'd've": "i would have", "i'll": "i will", "i'll've": "i will have", "i'm": "i am",
"i've": "i have", "isn't": "is not", "it'd": "it would", "it'd've": "it would have",
"it'll": "it will", "it'll've": "it will have", "it's": "it is", "let's": "let us",
"ma'am": "madam", "mayn't": "may not", "might've": "might have", "mightn't": "might not",
"mightn't've": "might not have", "must've": "must have", "mustn't": "must not",
"mustn't've": "must not have", "needn't": "need not", "needn't've": "need not have",
"o'clock": "of the clock", "oughtn't": "ought not", "oughtn't've": "ought not have",
"shan't": "shall not", "sha'n't": "shall not", "shan't've": "shall not have",
"she'd": "she would", "she'd've": "she would have", "she'll": "she will",
"she'll've": "she will have", "she's": "she is", "should've": "should have",
"shouldn't": "should not", "shouldn't've": "should not have", "so've": "so have",
"so's": "so as", "this's": "this is", "that'd": "that would", "that'd've": "that would have",
"that's": "that is", "there'd": "there would", "there'd've": "there would have",
"there's": "there is", "here's": "here is", "they'd": "they would",
"they'd've": "they would have", "they'll": "they will", "they'll've": "they will have",
"they're": "they are", "they've": "they have", "to've": "to have", "wasn't": "was not",
"we'd": "we would", "we'd've": "we would have", "we'll": "we will",
"we'll've": "we will have", "we're": "we are", "we've": "we have", "weren't": "were not",
"what'll": "what will", "what'll've": "what will have", "what're": "what are",
"what's": "what is", "what've": "what have", "when's": "when is", "when've": "when have",
"where'd": "where did", "where's": "where is", "where've": "where have",
"who'll": "who will", "who'll've": "who will have", "who's": "who is", "who've": "who have",
"why's": "why is", "why've": "why have", "will've": "will have", "won't": "will not",
"won't've": "will not have", "would've": "would have", "wouldn't": "would not",
"wouldn't've": "would not have", "y'all": "you all", "y'all'd": "you all would",
"y'all'd've": "you all would have", "y'all're": "you all are", "y'all've": "you all have",
"you'd": "you would", "you'd've": "you would have", "you'll": "you will",
"you'll've": "you will have", "you're": "you are", "you've": "you have"}
sentences = sentences.apply(
lambda x: clean_contractions(x, contraction_mapping))
# 去除特殊字符
punct = "/-'?!.,#$%\'()*+-/:;<=>@[\\]^_`{|}~" + \
'""“”’' + '∞θ÷α•à−β∅³π‘₹´°£€\×™√²—–&'
punct_mapping = {"‘": "'", "₹": "e", "´": "'", "°": "", "€": "e", "™": "tm", "√": " sqrt ", "×": "x", "²": "2",
"—": "-", "–": "-", "’": "'", "_": "-", "`": "'", '“': '"', '”': '"', '“': '"', "£": "e",
'∞': 'infinity', 'θ': 'theta', '÷': '/', 'α': 'alpha', '•': '.', 'à': 'a', '−': '-', 'β': 'beta',
'∅': '', '³': '3', 'π': 'pi', }
sentences = sentences.apply(
lambda x: clean_special_chars(x, punct, punct_mapping))
# 提取数组
sentences = sentences.progress_apply(lambda x: x.split()).values
vocab_dic = {}
for sentence in tqdm(sentences, disable=False):
for word in sentence:
try:
vocab_dic[word] += 1
except KeyError:
vocab_dic[word] = 1
vocab_list = sorted([_ for _ in vocab_dic.items() if _[
1] >= min_freq], key=lambda x: x[1], reverse=True)[:max_size]
vocab_dic = {word_count[0]: idx for idx,
word_count in enumerate(vocab_list)}
vocab_dic.update({UNK: len(vocab_dic), PAD: len(vocab_dic) + 1})
return vocab_dic
def build_dataset(config):
if os.path.exists(config.vocab_path):
vocab = pkl.load(open(config.vocab_path, 'rb'))
else:
vocab = build_vocab(config.train_path,
max_size=MAX_VOCAB_SIZE, min_freq=1)
pkl.dump(vocab, open(config.vocab_path, 'wb'))
print(f"词典大小======== {len(vocab)}")
def load_dataset(path, pad_size=32):
df = pd.read_csv(path, encoding='utf-8', sep=',')
# train_df = pd.read_csv("./datasets/train.csv", encoding='utf-8', sep=',')
# test_df = pd.read_csv("./datasets/val.csv", encoding='utf-8', sep=',')
# test = pd.read_csv("../input/test.csv") # Test shape = (56370, 2)
# df = pd.concat([train_df, test_df]) # shape=(206916, 2)
df['Text'] = df['Text'].fillna('')
# TODO 这里读数据集写死了 title
# 转化为小写
sentences = df['Text'].apply(lambda x: x.lower())
# 去除缩写
contraction_mapping = {"here's": "here is", "it's": "it is", "ain't": "is not", "aren't": "are not",
"can't": "cannot", "'cause": "because", "could've": "could have",
"couldn't": "could not",
"didn't": "did not", "doesn't": "does not", "don't": "do not", "hadn't": "had not",
"hasn't": "has not", "haven't": "have not", "he'd": "he would", "he'll": "he will",
"he's": "he is", "how'd": "how did", "how'd'y": "how do you", "how'll": "how will",
"how's": "how is", "I'd": "I would", "I'd've": "I would have", "I'll": "I will",
"I'll've": "I will have", "I'm": "I am", "I've": "I have", "i'd": "i would",
"i'd've": "i would have", "i'll": "i will", "i'll've": "i will have", "i'm": "i am",
"i've": "i have", "isn't": "is not", "it'd": "it would", "it'd've": "it would have",
"it'll": "it will", "it'll've": "it will have", "it's": "it is", "let's": "let us",
"ma'am": "madam", "mayn't": "may not", "might've": "might have", "mightn't": "might not",
"mightn't've": "might not have", "must've": "must have", "mustn't": "must not",
"mustn't've": "must not have", "needn't": "need not", "needn't've": "need not have",
"o'clock": "of the clock", "oughtn't": "ought not", "oughtn't've": "ought not have",
"shan't": "shall not", "sha'n't": "shall not", "shan't've": "shall not have",
"she'd": "she would", "she'd've": "she would have", "she'll": "she will",
"she'll've": "she will have", "she's": "she is", "should've": "should have",
"shouldn't": "should not", "shouldn't've": "should not have", "so've": "so have",
"so's": "so as", "this's": "this is", "that'd": "that would",
"that'd've": "that would have",
"that's": "that is", "there'd": "there would", "there'd've": "there would have",
"there's": "there is", "here's": "here is", "they'd": "they would",
"they'd've": "they would have", "they'll": "they will", "they'll've": "they will have",
"they're": "they are", "they've": "they have", "to've": "to have", "wasn't": "was not",
"we'd": "we would", "we'd've": "we would have", "we'll": "we will",
"we'll've": "we will have", "we're": "we are", "we've": "we have", "weren't": "were not",
"what'll": "what will", "what'll've": "what will have", "what're": "what are",
"what's": "what is", "what've": "what have", "when's": "when is", "when've": "when have",
"where'd": "where did", "where's": "where is", "where've": "where have",
"who'll": "who will", "who'll've": "who will have", "who's": "who is",
"who've": "who have",
"why's": "why is", "why've": "why have", "will've": "will have", "won't": "will not",
"won't've": "will not have", "would've": "would have", "wouldn't": "would not",
"wouldn't've": "would not have", "y'all": "you all", "y'all'd": "you all would",
"y'all'd've": "you all would have", "y'all're": "you all are",
"y'all've": "you all have",
"you'd": "you would", "you'd've": "you would have", "you'll": "you will",
"you'll've": "you will have", "you're": "you are", "you've": "you have"}
sentences = sentences.apply(
lambda x: clean_contractions(x, contraction_mapping))
# 去除特殊字符
punct = "/-'?!.,#$%\'()*+-/:;<=>@[\\]^_`{|}~" + \
'""“”’' + '∞θ÷α•à−β∅³π‘₹´°£€\×™√²—–&'
punct_mapping = {"‘": "'", "₹": "e", "´": "'", "°": "", "€": "e", "™": "tm", "√": " sqrt ", "×": "x", "²": "2",
"—": "-", "–": "-", "’": "'", "_": "-", "`": "'", '“': '"', '”': '"', '“': '"', "£": "e",
'∞': 'infinity', 'θ': 'theta', '÷': '/', 'α': 'alpha', '•': '.', 'à': 'a', '−': '-',
'β': 'beta',
'∅': '', '³': '3', 'π': 'pi', }
sentences = sentences.apply(
lambda x: clean_special_chars(x, punct, punct_mapping))
# 提取数组
sentences = sentences.progress_apply(lambda x: x.split()).values
labels = df['Starts']
labels_id = list(set(df['Starts']))
labels_id.sort()
contents = []
count = 0
for i, token in tqdm(enumerate(sentences)):
label = labels[i]
words_line = []
seq_len = len(token)
count += seq_len
if pad_size:
if len(token) < pad_size:
token.extend([PAD] * (pad_size - len(token)))
else:
token = token[:pad_size]
seq_len = pad_size
# word to id
for word in token:
words_line.append(vocab.get(word, vocab.get(UNK)))
contents.append((words_line, labels_id.index(label), seq_len))
print(f"数据集地址========{path}")
print(f"数据集总词数========{count}")
print(f"数据集文本数========{len(sentences)}")
print(f"数据集文本平均词数========{count/len(sentences)}")
print(f"训练集标签========{set(df['Starts'])}")
return contents # [([...], 0), ([...], 1), ...]
train = load_dataset(config.train_path, config.pad_size)
dev = load_dataset(config.dev_path, config.pad_size)
test = load_dataset(config.test_path, config.pad_size)
return vocab, train, dev, test
class DatasetIterater(object):
def __init__(self, batches, batch_size, device):
self.batch_size = batch_size
self.batches = batches
self.n_batches = len(batches) // batch_size
self.residue = False
if len(batches) % self.n_batches != 0:
self.residue = True
self.index = 0
self.device = device
def _to_tensor(self, datas):
x = torch.LongTensor([_[0] for _ in datas]).to(self.device)
y = torch.LongTensor([_[1] for _ in datas]).to(self.device)
# pad前的长度(超过pad_size的设为pad_size)
seq_len = torch.LongTensor([_[2] for _ in datas]).to(self.device)
return (x, seq_len), y
def __next__(self):
if self.residue and self.index == self.n_batches:
batches = self.batches[self.index *
self.batch_size: len(self.batches)]
self.index += 1
batches = self._to_tensor(batches)
return batches
elif self.index >= self.n_batches:
self.index = 0
raise StopIteration
else:
batches = self.batches[self.index *
self.batch_size: (self.index + 1) * self.batch_size]
self.index += 1
batches = self._to_tensor(batches)
return batches
def __iter__(self):
return self
def __len__(self):
if self.residue:
return self.n_batches + 1
else:
return self.n_batches
def build_iterator(dataset, config):
iter = DatasetIterater(dataset, config.batch_size, config.device)
return iter
def get_time_dif(start_time):
"""获取已使用时间"""
end_time = time.time()
time_dif = end_time - start_time
return timedelta(seconds=int(round(time_dif)))
if __name__ == "__main__":
class Config():
def __init__(self):
self.vocab_path = './datasets/vocab.pkl'
self.train_path = './datasets/train.csv'
self.dev_path = './datasets/val.csv'
self.test_path = './datasets/test.csv'
self.pad_size = 160
self.batch_size = 128
self.device = 'cpu'
vocab, train_data, dev_data, test_data = build_dataset(Config())
train_iter = build_iterator(train_data, Config())
dev_iter = build_iterator(dev_data, Config())
test_iter = build_iterator(test_data, Config())