-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain_CLIP.py
134 lines (109 loc) · 3.21 KB
/
main_CLIP.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
import torch
import torch.nn as nn
from torch.utils.data import DataLoader
from transformers import CLIPProcessor, CLIPModel, AutoTokenizer
import open_clip
from src.train import fit
from src.load_data import load_data
from src.evaluate import evaluate
from src.config import get_config
from CLIP.VQADataset import VQADataset
from CLIP.classifier import Classifier
from CLIP.encoder import TextEncoder, VisualEncoder
from CLIP.VQAModel import VQAModel
def main():
config = get_config()
data_path = config.data_path
train_data = load_data(config.train_data_path)
val_data = load_data(config.val_data_path)
test_data = load_data(config.test_data_path)
train_batch_size = config.train_batch_size
test_batch_size = config.test_batch_size
lr = config.lr
epochs = config.epochs
scheduler_step_size = config.scheduler_step_size
clip_model_type = config.clip_model_type
clip_pretrained = config.clip_pretrained
device = 'cuda' if torch.cuda.is_available() else 'cpu'
criterion = nn.CrossEntropyLoss()
model_clip, _, preprocess = open_clip.create_model_and_transforms(clip_model_type, pretrained=clip_pretrained)
tokenizer = open_clip.get_tokenizer(clip_model_type)
model_clip.to(device)
classes = set([sample["answer"] for sample in train_data])
# Dictionary mapping classes
cls_to_idx = {
cls_name: idx for idx, cls_name in enumerate(classes)
}
idx_to_cls = {
idx: cls_name for idx, cls_name in enumerate(classes)
}
train_dataset = VQADataset(
train_data,
cls_to_idx,
preprocess,
tokenizer,
device,
data_path
)
val_dataset = VQADataset(
val_data,
cls_to_idx,
preprocess,
tokenizer,
device,
data_path
)
test_dataset = VQADataset(
test_data,
cls_to_idx,
preprocess,
tokenizer,
device,
data_path
)
train_loader = DataLoader(
train_dataset,
batch_size=train_batch_size,
shuffle=True
)
val_loader = DataLoader(
val_dataset,
batch_size=train_batch_size,
shuffle=False
)
test_loader = DataLoader(
test_dataset,
batch_size=test_batch_size,
shuffle=False
)
text_encoder = TextEncoder(model_clip).to(device)
visual_encoder = VisualEncoder(model_clip).to(device)
classifier = Classifier().to(device)
model = VQAModel(
visual_encoder=visual_encoder,
text_tokenizer=text_encoder,
classifier=classifier
).to(device)
model.freeze()
optimizer = torch.optim.Adam(
model.parameters(),
lr=lr
)
scheduler = torch.optim.lr_scheduler.StepLR(
optimizer,
step_size=scheduler_step_size,
gamma=0.1
)
train_losses, val_losses, model = fit(
model, train_loader, val_loader, criterion, optimizer, scheduler, device, epochs
)
torch.save(model.state_dict(), 'model.pth')
print("Model saved successfully.")
test_loss, test_acc = evaluate(
model,
test_loader,
criterion
)
print(f'Test loss: {test_loss:.4f} Test Acc:{test_acc:.4f}')
if __name__ == '__main__':
main()