1
+ {
2
+ "nbformat" : 4 ,
3
+ "nbformat_minor" : 0 ,
4
+ "metadata" : {
5
+ "colab" : {
6
+ "provenance" : [],
7
+ "mount_file_id" : " 1QC8aqJ1jmDgvbL2AcMXxASh61JIgRZdQ" ,
8
+ "authorship_tag" : " ABX9TyMvQ6iH7cdBcfbFewmQ7r1w" ,
9
+ "include_colab_link" : true
10
+ },
11
+ "kernelspec" : {
12
+ "name" : " python3" ,
13
+ "display_name" : " Python 3"
14
+ },
15
+ "language_info" : {
16
+ "name" : " python"
17
+ }
18
+ },
19
+ "cells" : [
20
+ {
21
+ "cell_type" : " markdown" ,
22
+ "metadata" : {
23
+ "id" : " view-in-github" ,
24
+ "colab_type" : " text"
25
+ },
26
+ "source" : [
27
+ " <a href=\" https://colab.research.google.com/github/dineshreddy221/Python/blob/main/flattened_nested_list.ipynb\" target=\" _parent\" ><img src=\" https://colab.research.google.com/assets/colab-badge.svg\" alt=\" Open In Colab\" /></a>"
28
+ ]
29
+ },
30
+ {
31
+ "cell_type" : " code" ,
32
+ "source" : [
33
+ " # flattening the nested list\n " ,
34
+ " l = [1,2,3,['a','b',1],'a',2,[2]]\n " ,
35
+ " #output : [1,2,3,'a','b']\n " ,
36
+ " \n " ,
37
+ " lst = []\n " ,
38
+ " for i in l:\n " ,
39
+ " if type(i) == int:\n " ,
40
+ " lst.append(i)\n " ,
41
+ " elif type(i) == list:\n " ,
42
+ " for elem in i:\n " ,
43
+ " if type(elem) == str:\n " ,
44
+ " lst.append(elem)\n " ,
45
+ " break\n " ,
46
+ " \n " ,
47
+ " print(lst)"
48
+ ],
49
+ "metadata" : {
50
+ "colab" : {
51
+ "base_uri" : " https://localhost:8080/"
52
+ },
53
+ "id" : " CClOwOo1UES4" ,
54
+ "outputId" : " ba3dd8a2-b4e5-4fff-f6db-934cdb42f07f"
55
+ },
56
+ "execution_count" : null ,
57
+ "outputs" : [
58
+ {
59
+ "output_type" : " stream" ,
60
+ "name" : " stdout" ,
61
+ "text" : [
62
+ " [1, 2, 3, 'a', 'b']\n "
63
+ ]
64
+ }
65
+ ]
66
+ },
67
+ {
68
+ "cell_type" : " code" ,
69
+ "source" : [
70
+ " # separate different data types to list of nested categories\n " ,
71
+ " l_1 = [\" code\" , \" meat\" ,['a','b',1],'a',\" img\" ,\" stress\" ]\n " ,
72
+ " # output :[[\" code\" , \" meat\" , 'a','b', 'img', 'stress'],[1]]\n " ,
73
+ " \n " ,
74
+ " str_lst = []\n " ,
75
+ " for string in l_1:\n " ,
76
+ " if type(string) == str:\n " ,
77
+ " str_lst.append(string)\n " ,
78
+ " if type(string) == list:\n " ,
79
+ " for elem in string:\n " ,
80
+ " if type(elem) == str:\n " ,
81
+ " str_lst.append(elem)\n " ,
82
+ " else:\n " ,
83
+ " str_lst.insert(len(str_lst), elem)\n " ,
84
+ " print(str_lst)\n "
85
+ ],
86
+ "metadata" : {
87
+ "id" : " hn-lvSUYaXQu" ,
88
+ "colab" : {
89
+ "base_uri" : " https://localhost:8080/"
90
+ },
91
+ "outputId" : " 38948868-a816-4147-da0c-94ef1aa0ad91"
92
+ },
93
+ "execution_count" : null ,
94
+ "outputs" : [
95
+ {
96
+ "output_type" : " stream" ,
97
+ "name" : " stdout" ,
98
+ "text" : [
99
+ " ['code', 'meat', 'a', 'b', 1, 'a', 'img', 'stress']\n "
100
+ ]
101
+ }
102
+ ]
103
+ },
104
+ {
105
+ "cell_type" : " code" ,
106
+ "source" : [
107
+ " # nested nested list with integer, strings.\n " ,
108
+ " nested_nested_list = [[1, 2, [3, 4, [5, 6, 7]], 8], ['a', 'b', ['c', 'd', ['e', 'f']]]]\n " ,
109
+ " # output: [1, 2, 3, 4, 5, 6, 7, 8, 'a', 'b', 'c', 'd', 'e', 'f']\n " ,
110
+ " \n " ,
111
+ " lst = []\n " ,
112
+ " for elem in nested_nested_list:\n " ,
113
+ " for lst_elem in elem:\n " ,
114
+ " if type(lst_elem) == int:\n " ,
115
+ " # lst.insert(len(lst), lst_elem)\n " ,
116
+ " lst.append(lst_elem)\n " ,
117
+ " else:\n " ,
118
+ " for i in lst_elem:\n " ,
119
+ " if type(i) == int:\n " ,
120
+ " lst.append(i)\n " ,
121
+ " else:\n " ,
122
+ " if type(i) == list:\n " ,
123
+ " for last_lst in i:\n " ,
124
+ " lst.append(last_lst)\n " ,
125
+ " else:\n " ,
126
+ " if type(i) == str:\n " ,
127
+ " lst.append(i)\n " ,
128
+ " \n " ,
129
+ " print(lst)"
130
+ ],
131
+ "metadata" : {
132
+ "id" : " ywYcDq80afrG" ,
133
+ "colab" : {
134
+ "base_uri" : " https://localhost:8080/"
135
+ },
136
+ "outputId" : " a9c70b23-b25e-4421-9e9b-e8d0931d3dea"
137
+ },
138
+ "execution_count" : null ,
139
+ "outputs" : [
140
+ {
141
+ "output_type" : " stream" ,
142
+ "name" : " stdout" ,
143
+ "text" : [
144
+ " [1, 2, 3, 4, 5, 6, 7, 8, 'a', 'b', 'c', 'd', 'e', 'f']\n "
145
+ ]
146
+ }
147
+ ]
148
+ },
149
+ {
150
+ "cell_type" : " code" ,
151
+ "source" : [
152
+ " # Nested nested list with integer and string elements:\n " ,
153
+ " nested_nested_list_1 = [[1, 2, [3, 4, ['a', 'b']], 5], ['c', 'd', ['e', 'f', [6, 7, 8]]]]\n " ,
154
+ " # output: [1, 2, 3, 4, 'a', 'b', 5, 'c', 'd', 'e', 'f', 6, 7, 8]\n " ,
155
+ " \n " ,
156
+ " lst_3 = []\n " ,
157
+ " for nes_nes_lst in nested_nested_list_1:\n " ,
158
+ " for nes_lst in nes_nes_lst:\n " ,
159
+ " if type(nes_lst) == int:\n " ,
160
+ " lst_3.append(nes_lst)\n " ,
161
+ " if type(nes_lst) == list:\n " ,
162
+ " for elem in nes_lst:\n " ,
163
+ " if type(elem) == int:\n " ,
164
+ " lst_3.append(elem)\n " ,
165
+ " if type(elem) == str:\n " ,
166
+ " lst_3.append(elem)\n " ,
167
+ " if type(elem) == list:\n " ,
168
+ " for elem_1 in elem:\n " ,
169
+ " lst_3.append(elem_1)\n " ,
170
+ " if type(nes_lst) == str:\n " ,
171
+ " lst_3.append(nes_lst)\n " ,
172
+ " \n " ,
173
+ " print(\" original nested nested list\" , nested_nested_list_1)\n " ,
174
+ " \n " ,
175
+ " print(\" list of flatten values\" ,lst_3)\n "
176
+ ],
177
+ "metadata" : {
178
+ "colab" : {
179
+ "base_uri" : " https://localhost:8080/"
180
+ },
181
+ "id" : " LONkVGWvdVXw" ,
182
+ "outputId" : " 841ce724-1312-4a25-e577-be00611b5f07"
183
+ },
184
+ "execution_count" : null ,
185
+ "outputs" : [
186
+ {
187
+ "output_type" : " stream" ,
188
+ "name" : " stdout" ,
189
+ "text" : [
190
+ " original nested nested list [[1, 2, [3, 4, ['a', 'b']], 5], ['c', 'd', ['e', 'f', [6, 7, 8]]]]\n " ,
191
+ " list of flatten values [1, 2, 3, 4, 'a', 'b', 5, 'c', 'd', 'e', 'f', 6, 7, 8]\n "
192
+ ]
193
+ }
194
+ ]
195
+ },
196
+ {
197
+ "cell_type" : " code" ,
198
+ "source" : [
199
+ " # Nested nested list with boolean and list elements\n " ,
200
+ " nested_nested_list_2 = [[True, False, [True, True, [False, True]], False], [['a', 'b'], ['c', 'd'], [['e'], ['f', 'g']]]]\n " ,
201
+ " # output: [True, False, True, True, False, True, False, 'a', 'b', 'c', 'd', 'e', 'f', 'g']\n " ,
202
+ " \n " ,
203
+ " lst_4 = []\n " ,
204
+ " for nes_nes_lst_2 in nested_nested_list_2:\n " ,
205
+ " for nes_lst_2 in nes_nes_lst_2:\n " ,
206
+ " # print(nes_lst_2)\n " ,
207
+ " if type(nes_lst_2) == bool:\n " ,
208
+ " lst_4.append(nes_lst_2)\n " ,
209
+ " if type(nes_lst_2) == list:\n " ,
210
+ " for nes_elem in nes_lst_2:\n " ,
211
+ " if type(nes_elem) == bool:\n " ,
212
+ " lst_4.append(nes_elem)\n " ,
213
+ " if type(nes_elem) == list:\n " ,
214
+ " for nes_elem_lst in nes_elem:\n " ,
215
+ " lst_4.append(nes_elem_lst)\n " ,
216
+ " \n " ,
217
+ " if type(nes_elem) == str:\n " ,
218
+ " lst_4.append(nes_elem)\n " ,
219
+ " \n " ,
220
+ " print(\" flattened list of values\" ,lst_4)"
221
+ ],
222
+ "metadata" : {
223
+ "colab" : {
224
+ "base_uri" : " https://localhost:8080/"
225
+ },
226
+ "id" : " TS8SLnIisbOb" ,
227
+ "outputId" : " 24c6cca8-bf26-4075-cac8-a1bea255156b"
228
+ },
229
+ "execution_count" : null ,
230
+ "outputs" : [
231
+ {
232
+ "output_type" : " stream" ,
233
+ "name" : " stdout" ,
234
+ "text" : [
235
+ " flattened list of values [True, False, True, True, False, True, False, 'a', 'b', 'c', 'd', 'e', 'f', 'g']\n "
236
+ ]
237
+ }
238
+ ]
239
+ },
240
+ {
241
+ "cell_type" : " code" ,
242
+ "source" : [
243
+ " # Nested nested list with mixed data types\n " ,
244
+ " nested_nested_list_3 = [['apple', 'banana', [1, 2, 3]], [4, 5, ['cat', 'dog', ['elephant', 6, 7]]]]\n " ,
245
+ " # output: ['apple', 'banana', 1, 2, 3, 4, 5, 'cat', 'dog', 'elephant', 6, 7]\n " ,
246
+ " \n " ,
247
+ " lst_5 = []\n " ,
248
+ " for nes_nes_lst_3 in nested_nested_list_3:\n " ,
249
+ " for nes_lst in nes_nes_lst_3:\n " ,
250
+ " # print(nes_lst)\n " ,
251
+ " if type(nes_lst) == str:\n " ,
252
+ " lst_5.append(nes_lst)\n " ,
253
+ " if type(nes_lst) == int:\n " ,
254
+ " lst_5.append(nes_lst)\n " ,
255
+ " if type(nes_lst) == list:\n " ,
256
+ " for elem in nes_lst:\n " ,
257
+ " if type(elem) == int:\n " ,
258
+ " lst_5.append(elem)\n " ,
259
+ " if type(elem) == str:\n " ,
260
+ " lst_5.append(elem)\n " ,
261
+ " if type(elem) == list:\n " ,
262
+ " for nes_elem in elem:\n " ,
263
+ " lst_5.append(nes_elem)\n " ,
264
+ " \n " ,
265
+ " \n " ,
266
+ " \n " ,
267
+ " print(\" flatened list of values\" , lst_5)"
268
+ ],
269
+ "metadata" : {
270
+ "colab" : {
271
+ "base_uri" : " https://localhost:8080/"
272
+ },
273
+ "id" : " 7l7QHe7psbLj" ,
274
+ "outputId" : " b28ba1c8-c705-4df9-dbbe-b35ca635bae4"
275
+ },
276
+ "execution_count" : 175 ,
277
+ "outputs" : [
278
+ {
279
+ "output_type" : " stream" ,
280
+ "name" : " stdout" ,
281
+ "text" : [
282
+ " flatened list of values ['apple', 'banana', 1, 2, 3, 4, 5, 'cat', 'dog', 'elephant', 6, 7]\n "
283
+ ]
284
+ }
285
+ ]
286
+ },
287
+ {
288
+ "cell_type" : " code" ,
289
+ "source" : [],
290
+ "metadata" : {
291
+ "id" : " XeJRFj_N41VW"
292
+ },
293
+ "execution_count" : null ,
294
+ "outputs" : []
295
+ }
296
+ ]
297
+ }
0 commit comments