-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathvisualize.py
127 lines (103 loc) · 4.34 KB
/
visualize.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
import json
import networkx as nx
import matplotlib.pyplot as plt
from pathlib import Path
import random
def load_dependency_map(json_path):
with open(json_path) as f:
return json.load(f)
def create_dependency_graph(dependency_map):
G = nx.DiGraph()
# Add nodes
for node in dependency_map.keys():
# Use the last two parts of the path as node label
label = '/'.join(Path(node).parts[-2:])
G.add_node(node, label=label)
# Add edges
for source, targets in dependency_map.items():
for target in targets:
G.add_edge(source, target)
return G
def plot_dependency_graph(G, output_path, plot_type='spring'):
plt.figure(figsize=(20, 20))
# Choose layout
if plot_type == 'spring':
pos = nx.spring_layout(G, k=1, iterations=50)
elif plot_type == 'circular':
pos = nx.circular_layout(G)
elif plot_type == 'kamada_kawai':
pos = nx.kamada_kawai_layout(G)
else:
pos = nx.spring_layout(G)
# Plot edges
nx.draw_networkx_edges(G, pos,
edge_color='gray',
alpha=0.2,
arrows=True,
arrowsize=10)
# Plot nodes
nx.draw_networkx_nodes(G, pos,
node_size=100,
node_color='lightblue',
alpha=0.6)
# Add labels using the shortened names
labels = nx.get_node_attributes(G, 'label')
nx.draw_networkx_labels(G, pos, labels,
font_size=8,
font_weight='bold')
# Add title and remove axes
plt.title("Terragrunt Dependencies Graph", pad=20, size=16)
plt.axis('off')
# Save plot
plt.savefig(output_path, format='png', dpi=300, bbox_inches='tight')
plt.close()
def analyze_graph(G):
analysis = {
'total_nodes': G.number_of_nodes(),
'total_edges': G.number_of_edges(),
'average_degree': sum(dict(G.degree()).values()) / G.number_of_nodes(),
'density': nx.density(G),
'strongly_connected_components': nx.number_strongly_connected_components(G),
'longest_path': len(nx.dag_longest_path(G)) if nx.is_directed_acyclic_graph(G) else "Graph contains cycles"
}
# Find nodes with most dependencies
in_degrees = dict(G.in_degree())
out_degrees = dict(G.out_degree())
analysis['most_dependent_nodes'] = sorted([(node, degree) for node, degree in in_degrees.items()],
key=lambda x: x[1],
reverse=True)[:5]
analysis['most_depended_on_nodes'] = sorted([(node, degree) for node, degree in out_degrees.items()],
key=lambda x: x[1],
reverse=True)[:5]
return analysis
def print_analysis(analysis):
print("\nDependency Graph Analysis:")
print(f"Total Nodes: {analysis['total_nodes']}")
print(f"Total Edges: {analysis['total_edges']}")
print(f"Average Degree: {analysis['average_degree']:.2f}")
print(f"Graph Density: {analysis['density']:.4f}")
print(f"Strongly Connected Components: {analysis['strongly_connected_components']}")
print(f"Longest Path Length: {analysis['longest_path']}")
print("\nTop 5 Most Dependent Nodes (highest in-degree):")
for node, degree in analysis['most_dependent_nodes']:
print(f" {Path(node).parts[-2:]}: {degree} dependencies")
print("\nTop 5 Most Depended On Nodes (highest out-degree):")
for node, degree in analysis['most_depended_on_nodes']:
print(f" {Path(node).parts[-2:]}: {degree} dependents")
def main():
# Load dependency map
json_path = "terragrunt-monorepo/dependency_map.json"
dependency_map = load_dependency_map(json_path)
# Create graph
G = create_dependency_graph(dependency_map)
# Generate different layout visualizations
layouts = ['spring', 'circular', 'kamada_kawai']
for layout in layouts:
output_path = f"dependency_graph_{layout}.png"
plot_dependency_graph(G, output_path, layout)
print(f"Generated {output_path}")
# Analyze and print statistics
analysis = analyze_graph(G)
print_analysis(analysis)
if __name__ == "__main__":
main()