@@ -402,4 +402,127 @@ how much the
402
402
MorphFuncxy:
403
403
^^^^^^^^^^^^
404
404
The ``MorphFuncxy `` morph allows users to apply a custom Python function
405
- to a dataset, ***.
405
+ to a dataset that modifies both the ``x `` and ``y `` column values.
406
+ This is equivalent to applying a ``MorphFuncx `` and ``MorphFuncy ``
407
+ simultaneously.
408
+
409
+ This morph is useful when you want to apply operations that modify both
410
+ the grid and function value. A PDF-specific example includes computing
411
+ PDFs from 1D diffraction data (see paragraph at the end of this section).
412
+
413
+ For this tutorial, we will go through two examples. One simple one
414
+ involving shifting a function in the ``x `` and ``y `` directions, and
415
+ another involving a Fourier transform.
416
+
417
+ 1. Let's start by taking a simple ``sine `` function:
418
+ .. code-block :: python
419
+
420
+ import numpy as np
421
+ morph_x = np.linspace(0 , 10 , 101 )
422
+ morph_y = np.sin(morph_x)
423
+ morph_table = np.array([morph_x, morph_y]).T
424
+
425
+ 2. Then, let our target function be that same ``sine `` function shifted
426
+ to the right by ``0.3 `` and up by ``0.7 ``:
427
+ .. code-block :: python
428
+
429
+ target_x = morph_x + 0.3
430
+ target_y = morph_y + 0.7
431
+ target_table = np.array([target_x, target_y]).T
432
+
433
+ 3. While we could use the ``hshift `` and ``vshift `` morphs,
434
+ this would require us to refine over two separate morph
435
+ operations. We can instead perform these morphs simultaneously
436
+ by defining a function:
437
+ .. code-block :: python
438
+
439
+ def shift (x , y , hshift , vshift ):
440
+ return x + hshift, y + vshift
441
+
442
+ 4. Now, let's try finding the optimal shift parameters using the ``MorphFuncxy `` morph.
443
+ We can try an initial guess of ``hshift=0.0 `` and ``vshift=0.0 ``:
444
+ .. code-block :: python
445
+
446
+ from diffpy.morph.morphpy import morph_arrays
447
+ initial_guesses = {" hshift" : 0.0 , " vshift" : 0.0 }
448
+ info, table = morph_arrays(morph_table, target_table, funcxy = (shift, initial_guesses))
449
+
450
+ 5. Finally, to see the refined ``hshift `` and ``vshift `` parameters, we extract them from ``info ``:
451
+ .. code-block :: python
452
+
453
+ print (f " Refined hshift: { info[" funcxy" ][" hshift" ]} " )
454
+ print (f " Refined vshift: { info[" funcxy" ][" vshift" ]} " )
455
+
456
+ Now for an example involving a Fourier transform.
457
+
458
+ 1. Let's say you measured a signal of the form :math: `f(x)=\exp \{\cos (\pi x)\}`.
459
+ Unfortunately, your measurement was taken against a noisy sinusoidal
460
+ background of the form :math: `n(x)=A\sin (Bx)`, where ``A,B `` are unknown.
461
+ For our example, let's say (unknown to us) that ``A=2 `` and ``B=1.7 ``.
462
+ .. code-block :: python
463
+
464
+ import numpy as np
465
+ n = 201
466
+ dx = 0.01
467
+ measured_x = np.linspace(0 , 2 , n)
468
+
469
+ def signal (x ):
470
+ return np.exp(np.cos(np.pi * x))
471
+
472
+ def noise (x , A , B ):
473
+ return A * np.sin(B * x)
474
+
475
+ measured_f = signal(measured_x) + noise(measured_x, 2 , 1.7 )
476
+ morph_table = np.array([measured_x, measured_f]).T
477
+
478
+ 2. Your colleague remembers they previously computed the Fourier transform
479
+ of the function and has sent that to you.
480
+ .. code-block :: python
481
+
482
+ # We only consider the region where the grid is positive for simplicity
483
+ target_x = np.fft.fftfreq(n, dx)[:n// 2 ]
484
+ target_f = np.real(np.fft.fft(signal(measured_x))[:n// 2 ])
485
+ target_table = np.array([target_x, target_f]).T
486
+
487
+ 3. We can now write a noise subtraction function that takes in our measured
488
+ signal and guesses for parameters ``A,B ``, and computes the Fourier
489
+ transform post-noise-subtraction.
490
+ .. code-block :: python
491
+
492
+ def noise_subtracted_ft (x , y , A , B ):
493
+ n = 201
494
+ dx = 0.01
495
+ background_subtracted_y = y - noise(x, A, B)
496
+
497
+ ft_x = np.fft.fftfreq(n, dx)[:n// 2 ]
498
+ ft_f = np.real(np.fft.fft(background_subtracted_y)[:n// 2 ])
499
+
500
+ return ft_x, ft_f
501
+
502
+ 4. Finally, we can provide initial guesses of ``A=0 `` and ``B=1 `` to the
503
+ ``MorphFuncxy `` morph and see what refined values we get.
504
+ .. code-block :: python
505
+
506
+ from diffpy.morph.morphpy import morph_arrays
507
+ initial_guesses = {" A" : 0 , " B" : 1 }
508
+ info, table = morph_arrays(morph_table, target_table, funcxy = (background_subtracted_ft, initial_guesses))
509
+
510
+ 5. Print these values to see if they match with the true values of
511
+ of ``A=2.0 `` and ``B=1.7 ``!
512
+ .. code-block :: python
513
+
514
+ print (f " Refined A: { info[" funcxy" ][" A" ]} " )
515
+ print (f " Refined B: { info[" funcxy" ][" B" ]} " )
516
+
517
+ You can also use this morph to help find optimal parameters
518
+ (e.g. ``rpoly ``, ``qmin ``, ``qmax ``, ``bgscale ``) for computing
519
+ PDFs of materials with known structures.
520
+ One does this by setting the ``MorphFuncxy `` function to a PDF
521
+ computing function such as
522
+ ```PDFgetx3 `` <https://www.diffpy.org/products/pdfgetx.html>`_.
523
+ The input (morphed) 1D function should be the 1D diffraction data
524
+ one wishes to compute the PDF of and the target 1D function
525
+ can be the PDF of a target material with similar geometry.
526
+ More information about this will be released in the ``diffpy.morph ``
527
+ manuscript, and we plan to integrate this feature automatically into
528
+ ``PDFgetx3 `` soon.
0 commit comments