-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathtrain.py
218 lines (167 loc) · 8.82 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
import torch
import argparse
import os
import random
from torch.utils.data import DataLoader
from torch import optim
from dataprep.dataset import PointCloudDataset
from model.model import PCAutoEncoder
from model.model_fxia22 import PointNetAE
from torch.utils.tensorboard import SummaryWriter
import runmanager
"""
Run this "C:\Program Files (x86)\Microsoft Visual Studio\2019\Community\VC\Auxiliary\Build\vcvars64.bat"
for solving the error in loading the chamfer distance
"""
if torch.cuda.is_available():
from chamfer_distance.chamfer_distance_gpu import ChamferDistance # https://github.com/chrdiller/pyTorchChamferDistance
else:
from chamfer_distance.chamfer_distance_cpu import ChamferDistance # https://github.com/chrdiller/pyTorchChamferDistance
#########################################################################
# SHOULD BE STRICTLY REFACTORED - this is not acceptable here
def trimfilenames(iFileName):
# "F:\projects\ai\pointnet\dataset\DMUNet_OBJ_format\dataset_PCD_5000\Switch\Switch_4.pcd" -> "Switch\Switch_4.pcd"
pathComps = os.path.normpath(iFileName).split(os.sep)[-2:]
trimPath = os.sep.join(pathComps)
return trimPath
#########################################################################
def create_network(iModelType, iNumPoints, iModelPath = ''):
point_dim = 3
if iModelType == 'dhiraj':
autoencoder = PCAutoEncoder(point_dim, iNumPoints)
elif iModelType == 'fxia':
autoencoder = PointNetAE(iNumPoints)
if iModelPath != '':
autoencoder.load_state_dict(torch.load(ip_options.load_saved_model))
# It is recommented to move the model to GPU before constructing optimizers for it.
# This link discusses this point in detail - https://discuss.pytorch.org/t/effect-of-calling-model-cuda-after-constructing-an-optimizer/15165/8
# Moving the Network model to GPU
autoencoder.to(device)
return autoencoder
parser = argparse.ArgumentParser()
parser.add_argument("--batch_size", type=int, default=32, help="input batch size")
parser.add_argument("--num_points", type=int, required=True, help="Number of Points to sample")
parser.add_argument("--num_workers", type=int, default=4, help="Number Multiprocessing Workers")
parser.add_argument("--dataset_path", required=True, help="Path to Dataset")
parser.add_argument("--nepoch", type=int, required=True, help="Number of Epochs to train for")
parser.add_argument("--load_saved_model", default='', help="load an saved model")
parser.add_argument("--start_epoch_from", default=0, help="usually used with load model")
parser.add_argument("--model_type", required=True, choices=['dhiraj', 'fxia'], help="Model Types")
ip_options = parser.parse_args()
print(f"Input Arguments : {ip_options}")
# Seed the Randomness
manualSeed = random.randint(1, 10000) # fix seed
print("Random Seed: ", manualSeed)
random.seed(manualSeed)
torch.manual_seed(manualSeed) #later:
# Create instance of SummaryWriter
writer = SummaryWriter('runs/' + ip_options.model_type)
# determine the device to run the network on
device = torch.device('cuda') if torch.cuda.is_available() else torch.device('cpu')
# Creating Dataset
train_ds = PointCloudDataset(ip_options.dataset_path, ip_options.num_points, 'train')
test_ds = PointCloudDataset(ip_options.dataset_path, ip_options.num_points, 'test')
# Creating DataLoader
train_dl = DataLoader(train_ds, batch_size=ip_options.batch_size, shuffle=True, num_workers= ip_options.num_workers)
test_dl = DataLoader(test_ds, batch_size=ip_options.batch_size, shuffle=True, num_workers= ip_options.num_workers)
# Output of the dataloader is a tensor reprsenting
# [batch_size, num_channels, height, width]
# getting one data sample
sample, files = next(iter(train_ds))
# Creating Model
num_points = ip_options.num_points
point_dim = 3
if ip_options.model_type == 'dhiraj':
autoencoder = PCAutoEncoder(point_dim, num_points)
elif ip_options.model_type == 'fxia':
autoencoder = PointNetAE(num_points)
if ip_options.load_saved_model != '':
autoencoder.load_state_dict(torch.load(ip_options.load_saved_model))
#writer.add_graph(autoencoder, torch.tensor([28, 28]))
# iterating the weights for each layer
for name, param in autoencoder.named_parameters():
print(f"{name}:\t\t{param.shape}")
# It is recommented to move the model to GPU before constructing optimizers for it.
# This link discusses this point in detail - https://discuss.pytorch.org/t/effect-of-calling-model-cuda-after-constructing-an-optimizer/15165/8
# Moving the Network model to GPU
autoencoder.to(device)
# Setting up Optimizer - https://pytorch.org/docs/stable/optim.html
optimizer = optim.Adam(autoencoder.parameters(), lr=0.001, betas=(0.9, 0.999))
scheduler = optim.lr_scheduler.StepLR(optimizer, step_size=20, gamma=0.5)
# create folder for trained models to be saved
os.makedirs('saved_models', exist_ok=True)
# create instance of Chamfer Distance Loss Instance
chamfer_dist = ChamferDistance()
##########################################################################################
# START TRAINING OF THE NETWORK
print("Start Training...")
m = runmanager.RunManager(autoencoder, train_dl, writer)
for epoch in range(int(ip_options.start_epoch_from), ip_options.nepoch):
m.begin_epoch()
latent_vector_all = torch.Tensor().to(device)
filename_all = list()
for i, data in enumerate(train_dl):
points = data[0]
filenames = list(data[1])
points = points.transpose(2, 1)
points = points.to(device)
optimizer.zero_grad() # Reseting the gradients
reconstructed_points, latent_vector = autoencoder(points) # perform training
latent_vector_all = torch.cat((latent_vector_all, latent_vector), 0)
filename_all.extend(filenames)
points = points.transpose(1,2)
reconstructed_points = reconstructed_points.transpose(1,2)
dist1, dist2 = chamfer_dist(points, reconstructed_points) # calculate loss
train_loss = (torch.mean(dist1)) + (torch.mean(dist2))
print(f"Epoch: {epoch}, Iteration#: {i}, Train Loss: {train_loss}")
train_loss.backward() # Calculate the gradients using Back Propogation
optimizer.step() # Update the weights and biases
m.track_loss(train_loss)
# train_loss += train_loss
# add tensorboard logging
# for name, param in autoencoder.named_parameters():
# writer.add_histogram(name + "_grad", param.grad, i)
# epoch_loss = train_loss / (len(train_ds)/ip_options.batch_size)
# print(f"Mean Training Loss (per epoch) : {epoch_loss}")
scheduler.step()
m.end_epoch()
# # save model with the best loss
# if epoch_loss < best_loss:
# best_loss = epoch_loss
# torch.save(autoencoder.state_dict(), 'saved_models/autoencoder_%d.pth' % (epoch))
# writer.add_embedding(latent_vector_all, metadata=filename_all, global_step=epoch, tag="Latent_Vectors")
# # Tensorboard logging
# # 1. graph of loss function
# writer.add_scalar('Training Loss', epoch_loss, epoch)
# # 2. add historgram for weights and biases
# for name, param in autoencoder.named_parameters():
# if('bn' not in name and 'stn' not in name):
# writer.add_histogram(name, param, epoch)
# if param.grad is not None:
# writer.add_histogram(name + "_grad", param.grad, epoch)
##########################################################################################
# find the best performing epoch and run the network to get latent vectors
print("Generate the Best Latent Vectors")
with torch.no_grad():
best_latent_vector = torch.Tensor().to(device)
best_filenames = list()
autoencoder_eval = create_network(ip_options.model_type, ip_options.num_points)
state_dict = torch.load('saved_models/network_%d.pth' %m.best_epoch_id, map_location=device)
autoencoder_eval.load_state_dict(state_dict)
autoencoder_eval.eval() # set the network in evaluation mode
for itrid, data in enumerate(train_dl):
print(f"Evaluating Batch: {itrid}")
filenames = list(data[1])
points = data[0]
points = points.transpose(2, 1)
points = points.to(device)
reconstructed_points, latent_vector = autoencoder_eval(points) # perform training
best_latent_vector = torch.cat((best_latent_vector, latent_vector), 0)
best_filenames.extend(filenames)
# add embedding for t-sne visualiztion
trimmedFiles = list(map(trimfilenames, best_filenames))
writer.add_embedding(best_latent_vector, metadata=trimmedFiles, global_step=m.best_epoch_id, tag="Latent_Vectors")
# serialize the best latent vector
torch.save(best_latent_vector.detach(), 'saved_models/best_latent_vector_%d.pth' %m.best_epoch_id)
torch.save(best_filenames, 'saved_models/best_filenames_%d.pth' %m.best_epoch_id)
best_latent_vector = best_latent_vector.cpu().data.detach().numpy()