|
2 | 2 | "cells": [
|
3 | 3 | {
|
4 | 4 | "cell_type": "code",
|
5 |
| - "execution_count": 95, |
| 5 | + "execution_count": 126, |
6 | 6 | "metadata": {},
|
7 | 7 | "outputs": [],
|
8 | 8 | "source": [
|
|
14 | 14 | },
|
15 | 15 | {
|
16 | 16 | "cell_type": "code",
|
17 |
| - "execution_count": 96, |
| 17 | + "execution_count": 127, |
18 | 18 | "metadata": {},
|
19 | 19 | "outputs": [],
|
20 | 20 | "source": [
|
|
33 | 33 | },
|
34 | 34 | {
|
35 | 35 | "cell_type": "code",
|
36 |
| - "execution_count": 97, |
| 36 | + "execution_count": 128, |
37 | 37 | "metadata": {},
|
38 | 38 | "outputs": [],
|
39 | 39 | "source": [
|
|
45 | 45 | },
|
46 | 46 | {
|
47 | 47 | "cell_type": "code",
|
48 |
| - "execution_count": 98, |
| 48 | + "execution_count": 168, |
49 | 49 | "metadata": {},
|
50 | 50 | "outputs": [],
|
51 | 51 | "source": [
|
52 | 52 | "def cross_entropy(y_hat, y):\n",
|
53 |
| - " return -nd.pick(y_hat, y, axis=1)" |
| 53 | + " return -nd.pick(y_hat, y).log()" |
54 | 54 | ]
|
55 | 55 | },
|
56 | 56 | {
|
57 | 57 | "cell_type": "code",
|
58 |
| - "execution_count": 99, |
| 58 | + "execution_count": 169, |
59 | 59 | "metadata": {},
|
60 | 60 | "outputs": [],
|
61 | 61 | "source": [
|
|
66 | 66 | },
|
67 | 67 | {
|
68 | 68 | "cell_type": "code",
|
69 |
| - "execution_count": 100, |
| 69 | + "execution_count": 170, |
70 | 70 | "metadata": {},
|
71 | 71 | "outputs": [],
|
72 | 72 | "source": [
|
|
76 | 76 | },
|
77 | 77 | {
|
78 | 78 | "cell_type": "code",
|
79 |
| - "execution_count": 101, |
| 79 | + "execution_count": 171, |
80 | 80 | "metadata": {},
|
81 | 81 | "outputs": [],
|
82 | 82 | "source": [
|
|
87 | 87 | " y_hat = net(X, W, b, num_features)\n",
|
88 | 88 | " accumulator += accuracy(y_hat, y)\n",
|
89 | 89 | " size += len(y)\n",
|
90 |
| - " print(accumulator)\n", |
91 | 90 | " return accumulator / size"
|
92 | 91 | ]
|
93 | 92 | },
|
94 | 93 | {
|
95 | 94 | "cell_type": "code",
|
96 |
| - "execution_count": 102, |
| 95 | + "execution_count": 172, |
97 | 96 | "metadata": {},
|
98 | 97 | "outputs": [],
|
99 | 98 | "source": [
|
|
103 | 102 | },
|
104 | 103 | {
|
105 | 104 | "cell_type": "code",
|
106 |
| - "execution_count": 103, |
| 105 | + "execution_count": 173, |
107 | 106 | "metadata": {},
|
108 | 107 | "outputs": [],
|
109 | 108 | "source": [
|
|
114 | 113 | },
|
115 | 114 | {
|
116 | 115 | "cell_type": "code",
|
117 |
| - "execution_count": 104, |
| 116 | + "execution_count": 174, |
118 | 117 | "metadata": {},
|
119 | 118 | "outputs": [],
|
120 | 119 | "source": [
|
121 |
| - "num_inputs = 784\n", |
| 120 | + "num_inputs = 28 * 28\n", |
122 | 121 | "num_outputs = 10\n",
|
123 | 122 | "W = nd.random.normal(scale=0.01, shape=(num_inputs, num_outputs))\n",
|
124 | 123 | "b = nd.zeros(num_outputs)\n",
|
|
128 | 127 | },
|
129 | 128 | {
|
130 | 129 | "cell_type": "code",
|
131 |
| - "execution_count": 124, |
| 130 | + "execution_count": 175, |
132 | 131 | "metadata": {},
|
133 | 132 | "outputs": [
|
134 | 133 | {
|
135 | 134 | "name": "stdout",
|
136 | 135 | "output_type": "stream",
|
137 | 136 | "text": [
|
138 |
| - "\n", |
139 |
| - "[40504.]\n", |
140 |
| - "<NDArray 1 @cpu(0)>\n", |
141 |
| - "Epoch 0, acc: 0.675067\n", |
142 |
| - "\n", |
143 |
| - "[41122.]\n", |
144 |
| - "<NDArray 1 @cpu(0)>\n", |
145 |
| - "Epoch 1, acc: 0.685367\n", |
146 |
| - "\n", |
147 |
| - "[42817.]\n", |
148 |
| - "<NDArray 1 @cpu(0)>\n", |
149 |
| - "Epoch 2, acc: 0.713617\n", |
150 |
| - "\n", |
151 |
| - "[44973.]\n", |
152 |
| - "<NDArray 1 @cpu(0)>\n", |
153 |
| - "Epoch 3, acc: 0.749550\n", |
154 |
| - "\n", |
155 |
| - "[45543.]\n", |
156 |
| - "<NDArray 1 @cpu(0)>\n", |
157 |
| - "Epoch 4, acc: 0.759050\n", |
158 |
| - "\n", |
159 |
| - "[45997.]\n", |
160 |
| - "<NDArray 1 @cpu(0)>\n", |
161 |
| - "Epoch 5, acc: 0.766617\n", |
162 |
| - "\n", |
163 |
| - "[46272.]\n", |
164 |
| - "<NDArray 1 @cpu(0)>\n", |
165 |
| - "Epoch 6, acc: 0.771200\n", |
166 |
| - "\n", |
167 |
| - "[46486.]\n", |
168 |
| - "<NDArray 1 @cpu(0)>\n", |
169 |
| - "Epoch 7, acc: 0.774767\n", |
170 |
| - "\n", |
171 |
| - "[46629.]\n", |
172 |
| - "<NDArray 1 @cpu(0)>\n", |
173 |
| - "Epoch 8, acc: 0.777150\n", |
174 |
| - "\n", |
175 |
| - "[46824.]\n", |
176 |
| - "<NDArray 1 @cpu(0)>\n", |
177 |
| - "Epoch 9, acc: 0.780400\n" |
| 137 | + "Epoch 0, acc: 0.805417\n", |
| 138 | + "Epoch 1, acc: 0.820217\n", |
| 139 | + "Epoch 2, acc: 0.829133\n", |
| 140 | + "Epoch 3, acc: 0.834200\n", |
| 141 | + "Epoch 4, acc: 0.839000\n", |
| 142 | + "Epoch 5, acc: 0.841550\n", |
| 143 | + "Epoch 6, acc: 0.844400\n", |
| 144 | + "Epoch 7, acc: 0.845233\n", |
| 145 | + "Epoch 8, acc: 0.846100\n", |
| 146 | + "Epoch 9, acc: 0.846767\n" |
178 | 147 | ]
|
179 | 148 | }
|
180 | 149 | ],
|
|
197 | 166 | },
|
198 | 167 | {
|
199 | 168 | "cell_type": "code",
|
200 |
| - "execution_count": 123, |
| 169 | + "execution_count": 154, |
201 | 170 | "metadata": {},
|
202 | 171 | "outputs": [
|
203 | 172 | {
|
|
208 | 177 | "(256,)\n",
|
209 | 178 | "(256,)\n",
|
210 | 179 | "\n",
|
211 |
| - "[0.08203125]\n", |
| 180 | + "[0.11328125]\n", |
212 | 181 | "<NDArray 1 @cpu(0)>\n"
|
213 | 182 | ]
|
214 | 183 | }
|
|
0 commit comments