-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
174 lines (152 loc) · 6.36 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
import os
from fastapi import FastAPI, File, UploadFile, Form, HTTPException
from fastapi.middleware.cors import CORSMiddleware
from pydantic import BaseModel
from typing_extensions import Annotated, TypedDict, List
from typing import List, Optional
from dotenv import load_dotenv
import PyPDF2
import pptx # For PPTX extraction
import docx # For DOCX extraction
import csv # For CSV extraction
import io
from io import BytesIO
from langchain_groq import ChatGroq
from langchain.prompts import ChatPromptTemplate
from langchain.text_splitter import RecursiveCharacterTextSplitter
# Load environment variables
load_dotenv()
api_key = os.getenv("GROQ_API_KEY")
# Set up FastAPI
app = FastAPI()
# Enable CORS for all origins, can be restricted in production
app.add_middleware(
CORSMiddleware,
allow_origins=["*"],
allow_credentials=True,
allow_methods=["*"],
allow_headers=["*"],
)
class Flashcard(TypedDict):
"""Flashcard for learning."""
question: Annotated[str, "The question or prompt on the front of the flashcard"]
answer: Annotated[str, "The answer or explanation on the back of the flashcard"]
# A set of flashcards
class FlashcardSet(TypedDict):
"""Set of flashcards."""
flashcards: Annotated[List[Flashcard], "A list of flashcards based on the input text"]
# Define the Cloze Deletion Flashcard structure
class ClozeDeletionFlashcard(TypedDict):
"""Flashcard for cloze deletion."""
question_with_blanks: Annotated[str, "A sentence with one or more blanks (____) for the learner to fill in."]
correct_answers: Annotated[List[str], "The list of correct words or phrases that fill in the blanks."]
# A set of cloze deletion flashcards
class ClozeDeletionFlashcardSet(TypedDict):
"""Set of cloze deletion flashcards."""
flashcards: Annotated[List[ClozeDeletionFlashcard], "A list of fill-in-the-blank flashcards based on the input text."]
# Text extraction functions
def extract_text_from_pdf(file) -> str:
reader = PyPDF2.PdfReader(file)
text = ""
for page in reader.pages:
text += page.extract_text() or ""
return text
def extract_text_from_pptx(file) -> str:
file_bytes = BytesIO(file.read())
presentation = pptx.Presentation(file_bytes)
text = ""
for slide in presentation.slides:
for shape in slide.shapes:
if hasattr(shape, "text"):
text += shape.text + "\n"
file.seek(0)
return text
def extract_text_from_docx(file) -> str:
file_bytes = BytesIO(file.read())
doc = docx.Document(file_bytes)
text = ""
for paragraph in doc.paragraphs:
text += paragraph.text + "\n"
file.seek(0)
return text
def extract_text_from_csv(file) -> str:
decoded_file = io.StringIO(file.read().decode("utf-8"))
text = ""
reader = csv.reader(decoded_file)
for row in reader:
text += " ".join(row) + "\n"
file.seek(0)
return text
# Set up the LLM
llm = ChatGroq(temperature=0, model="llama3-8b-8192")
# Define prompts for different flashcard types
normal_prompt = ChatPromptTemplate.from_messages([
("system", "Generate a set of flashcards from the given text. Focus on key concepts and important information."),
("human", "Text: {chunk}\n\nGenerate a list of flashcards based on this text.")
])
cloze_prompt = ChatPromptTemplate.from_messages([
("system",
"Generate a set of cloze deletion flashcards from the given text. "
"Focus on creating simple fill-in-the-blank questions for key facts or important information."),
("human",
"Text: {chunk}\n\nCreate flashcards using simple cloze deletions. For each flashcard, replace key information with blanks (____) "
"to test the learner's memory. Provide the correct word or phrase for each blank in the answer.")
])
@app.get("/")
def read_root():
return {"message": "Welcome to the flashcard generation prototype!"}
@app.post("/flashcard/")
async def create_flashcards(
type: str = Form(...),
method: str = Form(...),
text: Optional[str] = Form(None),
file: Optional[UploadFile] = File(None)
):
all_flashcards = []
# Extraction and splitting based on the method
if method == "pdf":
if not file or not file.filename.endswith(".pdf"):
raise HTTPException(status_code=400, detail="Please upload a valid PDF file.")
extracted_text = extract_text_from_pdf(file.file)
elif method == "pptx":
if not file or not file.filename.endswith(".pptx"):
raise HTTPException(status_code=400, detail="Please upload a valid PPTX file.")
extracted_text = extract_text_from_pptx(file.file)
elif method == "docx":
if not file or not file.filename.endswith(".docx"):
raise HTTPException(status_code=400, detail="Please upload a valid DOCX file.")
extracted_text = extract_text_from_docx(file.file)
elif method == "csv":
if not file or not file.filename.endswith(".csv"):
raise HTTPException(status_code=400, detail="Please upload a valid CSV file.")
extracted_text = extract_text_from_csv(file.file)
elif method == "text":
if not text:
raise HTTPException(status_code=400, detail="Please provide valid text input.")
extracted_text = text
else:
raise HTTPException(status_code=400, detail="Invalid method specified.")
# Split the document into manageable chunks
chunks = RecursiveCharacterTextSplitter(chunk_size=750, chunk_overlap=100).split_text(extracted_text)
# Select the appropriate prompt based on the flashcard type
if type == "type-I":
structured_llm = llm.with_structured_output(FlashcardSet)
prompt = normal_prompt
elif type == "type-II":
structured_llm = llm.with_structured_output(ClozeDeletionFlashcardSet)
prompt = cloze_prompt
else:
raise HTTPException(status_code=400, detail="Invalid type specified.")
# Generate flashcards for the extracted chunks
for chunk in chunks:
if chunk.strip():
try:
response = structured_llm.invoke(prompt.format(chunk=chunk))
if 'flashcards' in response:
all_flashcards.extend(response['flashcards'])
except Exception as e:
print(f"Error generating flashcards for chunk")
return {"flashcards": all_flashcards}
if __name__ == "__main__":
import uvicorn
uvicorn.run(app, host="0.0.0.0", port=8000, debug=True)