-
Notifications
You must be signed in to change notification settings - Fork 31
/
Copy pathdcn.py
69 lines (58 loc) · 2.88 KB
/
dcn.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
import torch
import torchvision.ops
from torch import nn
class DeformableConv2d(nn.Module):
def __init__(self,
in_channels,
out_channels,
kernel_size=3,
stride=1,
padding=1,
dilation=1,
bias=False):
super(DeformableConv2d, self).__init__()
assert type(kernel_size) == tuple or type(kernel_size) == int
kernel_size = kernel_size if type(kernel_size) == tuple else (kernel_size, kernel_size)
self.stride = stride if type(stride) == tuple else (stride, stride)
self.padding = padding
self.dilation = dilation
self.offset_conv = nn.Conv2d(in_channels,
2 * kernel_size[0] * kernel_size[1],
kernel_size=kernel_size,
stride=stride,
padding=self.padding,
dilation=self.dilation,
bias=True)
nn.init.constant_(self.offset_conv.weight, 0.)
nn.init.constant_(self.offset_conv.bias, 0.)
self.modulator_conv = nn.Conv2d(in_channels,
1 * kernel_size[0] * kernel_size[1],
kernel_size=kernel_size,
stride=stride,
padding=self.padding,
dilation=self.dilation,
bias=True)
nn.init.constant_(self.modulator_conv.weight, 0.)
nn.init.constant_(self.modulator_conv.bias, 0.)
self.regular_conv = nn.Conv2d(in_channels=in_channels,
out_channels=out_channels,
kernel_size=kernel_size,
stride=stride,
padding=self.padding,
dilation=self.dilation,
bias=bias)
def forward(self, x):
# h, w = x.shape[2:]
# max_offset = max(h, w)/4.
offset = self.offset_conv(x) # .clamp(-max_offset, max_offset)
modulator = 2. * torch.sigmoid(self.modulator_conv(x))
# op = (n - (k * d - 1) + 2p / s)
x = torchvision.ops.deform_conv2d(input=x,
offset=offset,
weight=self.regular_conv.weight,
bias=self.regular_conv.bias,
padding=self.padding,
mask=modulator,
stride=self.stride,
dilation=self.dilation)
return x