-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathobject_tracker_SF.py
359 lines (307 loc) · 14.7 KB
/
object_tracker_SF.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
import os
# comment out below line to enable tensorflow logging outputs
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3'
import time
import tensorflow as tf
physical_devices = tf.config.experimental.list_physical_devices('GPU')
if len(physical_devices) > 0:
tf.config.experimental.set_memory_growth(physical_devices[0], True)
from absl import app, flags, logging
from absl.flags import FLAGS
import core.utils as utils
from core.yolov4 import filter_boxes
from tensorflow.python.saved_model import tag_constants
from core.config import cfg
from PIL import Image
import cv2
import numpy as np
import matplotlib.pyplot as plt
from tensorflow.compat.v1 import ConfigProto
from tensorflow.compat.v1 import InteractiveSession
from datetime import datetime
import pymysql.cursors
import socket
import time
# deep sort imports
from deep_sort import preprocessing, nn_matching
from deep_sort.detection import Detection
from deep_sort.tracker import Tracker
from tools import generate_detections as gdet
from ShopFloor import *
flags.DEFINE_string('framework', 'tf', '(tf, tflite, trt')
flags.DEFINE_string('weights', './checkpoints/yolov4-416',
'path to weights file')
flags.DEFINE_integer('size', 416, 'resize images to')
flags.DEFINE_boolean('tiny', False, 'yolo or yolo-tiny')
flags.DEFINE_string('model', 'yolov4', 'yolov3 or yolov4')
flags.DEFINE_string('video', './data/video/test.mp4', 'path to input video or set to 0 for webcam')
flags.DEFINE_string('output', None, 'path to output video')
flags.DEFINE_string('output_format', 'XVID', 'codec used in VideoWriter when saving video to file')
flags.DEFINE_float('iou', 0.48, 'iou threshold')
flags.DEFINE_float('score', 0.50, 'score threshold')
flags.DEFINE_boolean('dont_show', False, 'dont show video output')
flags.DEFINE_boolean('info', False, 'show detailed info of tracked objects')
flags.DEFINE_boolean('count', False, 'count objects being tracked on screen')
def main(_argv):
# Definition of the parameters
max_cosine_distance = 0.4
nn_budget = None
nms_max_overlap = 1.0
# initialize deep sort
model_filename = 'model_data/mars-small128.pb'
encoder = gdet.create_box_encoder(model_filename, batch_size=1)
# calculate cosine distance metric
metric = nn_matching.NearestNeighborDistanceMetric("cosine", max_cosine_distance, nn_budget)
# initialize tracker
tracker = Tracker(metric)
# load configuration for object detector
config = ConfigProto()
config.gpu_options.allow_growth = True
session = InteractiveSession(config=config)
STRIDES, ANCHORS, NUM_CLASS, XYSCALE = utils.load_config(FLAGS)
input_size = FLAGS.size
video_path = FLAGS.video
# load tflite model if flag is set
if FLAGS.framework == 'tflite':
interpreter = tf.lite.Interpreter(model_path=FLAGS.weights)
interpreter.allocate_tensors()
input_details = interpreter.get_input_details()
output_details = interpreter.get_output_details()
print(input_details)
print(output_details)
# otherwise load standard tensorflow saved model
else:
saved_model_loaded = tf.saved_model.load(FLAGS.weights, tags=[tag_constants.SERVING])
infer = saved_model_loaded.signatures['serving_default']
# begin video capture
try:
vid = cv2.VideoCapture(int(video_path))
except:
vid = cv2.VideoCapture(video_path)
out = None
# 비디오 해상도 설정
vid.set(cv2.CAP_PROP_FRAME_WIDTH, WIDTH)
vid.set(cv2.CAP_PROP_FRAME_HEIGHT, HEIGHT)
# get video ready to save locally if flag is set
if FLAGS.output:
# by default VideoCapture returns float instead of int
width = int(vid.get(cv2.CAP_PROP_FRAME_WIDTH))
height = int(vid.get(cv2.CAP_PROP_FRAME_HEIGHT))
fps = int(vid.get(cv2.CAP_PROP_FPS))
codec = cv2.VideoWriter_fourcc(*FLAGS.output_format)
out = cv2.VideoWriter(FLAGS.output, codec, fps, (width, height))
# dictionary
dictionary = {}
# cycletime
cyclelist = []
basket_cyclelist = []
soccer_cyclelist = []
global total_cycletime, basket_cycletime, soccer_cycletime
total_cycletime = basket_cycletime = soccer_cycletime = 0
# WIP list
wiplist = []
# 지표 변수 선언
global in_count, out_count, warning1, warning2, th, basket_in, basket_out, soccer_in, soccer_out
in_count = out_count = th = warning1 = warning2 = basket_in = basket_out = soccer_in = soccer_out = 0
############# GUI connect ###########
# client_socket.connect((HOST, PORT))
frame_num = 0
# while video is running
while True:
return_value, frame = vid.read()
if return_value:
frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
image = Image.fromarray(frame)
else:
print('Video has ended or failed, try a different video format!')
break
frame_num +=1
print('Frame #: ', frame_num)
frame_size = frame.shape[:2]
image_data = cv2.resize(frame, (input_size, input_size))
image_data = image_data / 255.
image_data = image_data[np.newaxis, ...].astype(np.float32)
start_time = time.time()
# run detections on tflite if flag is set
if FLAGS.framework == 'tflite':
interpreter.set_tensor(input_details[0]['index'], image_data)
interpreter.invoke()
pred = [interpreter.get_tensor(output_details[i]['index']) for i in range(len(output_details))]
# run detections using yolov3 if flag is set
if FLAGS.model == 'yolov3' and FLAGS.tiny == True:
boxes, pred_conf = filter_boxes(pred[1], pred[0], score_threshold=0.25,
input_shape=tf.constant([input_size, input_size]))
else:
boxes, pred_conf = filter_boxes(pred[0], pred[1], score_threshold=0.25,
input_shape=tf.constant([input_size, input_size]))
else:
batch_data = tf.constant(image_data)
pred_bbox = infer(batch_data)
for key, value in pred_bbox.items():
boxes = value[:, :, 0:4]
pred_conf = value[:, :, 4:]
boxes, scores, classes, valid_detections = tf.image.combined_non_max_suppression(
boxes=tf.reshape(boxes, (tf.shape(boxes)[0], -1, 1, 4)),
scores=tf.reshape(
pred_conf, (tf.shape(pred_conf)[0], -1, tf.shape(pred_conf)[-1])),
max_output_size_per_class=50,
max_total_size=50,
iou_threshold=FLAGS.iou,
score_threshold=FLAGS.score
)
# convert data to numpy arrays and slice out unused elements
num_objects = valid_detections.numpy()[0]
bboxes = boxes.numpy()[0]
bboxes = bboxes[0:int(num_objects)]
scores = scores.numpy()[0]
scores = scores[0:int(num_objects)]
classes = classes.numpy()[0]
classes = classes[0:int(num_objects)]
# format bounding boxes from normalized ymin, xmin, ymax, xmax ---> xmin, ymin, width, height
original_h, original_w, _ = frame.shape
bboxes = utils.format_boxes(bboxes, original_h, original_w)
# store all predictions in one parameter for simplicity when calling functions
pred_bbox = [bboxes, scores, classes, num_objects]
# read in all class names from config
class_names = utils.read_class_names(cfg.YOLO.CLASSES)
# by default allow all classes in .names file
allowed_classes = list(class_names.values())
# custom allowed classes (uncomment line below to customize tracker for only people)
allowed_classes = ['B','S']
# loop through objects and use class index to get class name, allow only classes in allowed_classes list
names = []
deleted_indx = []
basketball = []
soccerball = []
for i in range(num_objects):
class_indx = int(classes[i])
class_name = class_names[class_indx]
if class_name == "B":
basketball.append(class_name)
elif class_name == "S":
soccerball.append(class_name)
if class_name not in allowed_classes:
deleted_indx.append(i)
else:
names.append(class_name)
names = np.array(names)
# WIP 제품별 구분
basketball_count = len(np.array(basketball))
soccerball_count = len(np.array(soccerball))
count = len(names)
# delete detections that are not in allowed_classes
bboxes = np.delete(bboxes, deleted_indx, axis=0)
scores = np.delete(scores, deleted_indx, axis=0)
# encode yolo detections and feed to tracker
features = encoder(frame, bboxes)
detections = [Detection(bbox, score, class_name, feature) for bbox, score, class_name, feature in zip(bboxes, scores, names, features)]
# run non-maxima supression
boxs = np.array([d.tlwh for d in detections])
scores = np.array([d.confidence for d in detections])
classes = np.array([d.class_name for d in detections])
indices = preprocessing.non_max_suppression(boxs, classes, nms_max_overlap, scores)
detections = [detections[i] for i in indices]
# Call the tracker
tracker.predict()
tracker.update(detections)
# draw start line
draw_line(frame,start1,start2)
# draw end line
draw_line(frame,start1,start2)
# update tracks
for track in tracker.tracks:
if not track.is_confirmed() or track.time_since_update > 1:
continue
bbox = track.to_tlbr()
class_name = track.get_class()
# draw bbox on screen
# 공에 따라 색깔 구분
if class_name == "B":
color = (basketball_color)
else:
color = (soccerball_color)
cv2.rectangle(frame, (int(bbox[0]), int(bbox[1])), (int(bbox[2]), int(bbox[3])), color, 2)
cv2.rectangle(frame, (int(bbox[0]), int(bbox[1]-30)), (int(bbox[0])+(len(class_name)+len(str(track.track_id)))*21, int(bbox[1])), color, -1)
cv2.putText(frame, class_name + "-" + str(track.track_id),(int(bbox[0]), int(bbox[1]-10)),0, 0.70, (255,255,255),2)
# 공의 중심 계산
center_x = int((int(bbox[0]) + int(bbox[2])) / 2)
center_y = int((int(bbox[1]) + int(bbox[3])) / 2)
# DB insert
tnow = datetime.today().strftime("%Y%m%d%H%M%S")
sql = "insert into ball(ID,x_coordinate,y_coordinate,type,frame,Date) values({0},{1},{2},{3},{4},{5});".format(track.track_id, center_x, center_y, '"'+class_name + '"', frame_num, tnow)
cursor.execute(sql)
conn.commit()
# 중심좌표로 start line부터 추적
if (start1[0] <= center_x <= start2[0]) and (start1[1] - 3 <= center_y <= start2[1] + 3):
if (class_name + "-" + str(track.track_id)) not in wiplist:
wiplist.append(class_name + "-" + str(track.track_id))
cv2.line(frame,start1,start2,(0,0,0),3)
dictionary[class_name + "-" + str(track.track_id)] = time.time()
if class_name == "B":
basket_in += 1
else:
soccer_in += 1
in_count += 1
# end line 추적
if (end1[0] - 7 <= center_x <= end1[0] + 5) and (end1[1] <= center_y <= end2[1]):
if (class_name + "-" + str(track.track_id)) in wiplist:
wiplist.remove(class_name + "-" + str(track.track_id))
# donelist.append(class_name + "-" + str(track.track_id))
cv2.line(frame,end1,end2,(0,0,0),3)
cycletime = time.time() - dictionary.get(class_name + "-" + str(track.track_id))
cyclelist.append(cycletime)
if class_name == "B":
basket_cyclelist.append(cycletime)
basket_out += 1
else:
soccer_cyclelist.append(cycletime)
soccer_out += 1
del dictionary[class_name + "-" + str(track.track_id)]
out_count += 1
# calculate cycletime
if len(cyclelist) == 0:
total_cycletime = 0
else:
total_cycletime = round((sum(cyclelist) / len(cyclelist)), 3)
if len(basket_cyclelist) == 0:
basket_cycletime = 0
else:
basket_cycletime = round((sum(basket_cyclelist) / len(basket_cyclelist)), 3)
if len(soccer_cyclelist) == 0:
soccer_cycletime = 0
else:
soccer_cycletime = round((sum(soccer_cyclelist) / len(soccer_cyclelist)), 3)
# error zone 1
if (error1[0] < center_x < error1[0]+120) and (error1[1] < center_y < error1[1]+110):
cv2.rectangle(frame, (error1[0], error1[1]), (error1[0]+120, error1[1]+110), (255, 0, 0), 3)
cv2.putText(frame, "ERROR1", (error1[0]+5, error1[1]+130), cv2.FONT_HERSHEY_COMPLEX_SMALL, 1.3, (255, 0, 0), 2)
warning1 = 1
else:
warning1 = 0
# error zone 2
if (error2[0] < center_x < error2[0]+120) and (error2[1] < center_y < error2[1]+110):
cv2.rectangle(frame, (error2[0], error2[1]), (error2[0]+120, error2[0]+110), (255,0,0), 3)
cv2.putText(frame, "ERROR2", (error2[0]+5, error2[1]+130), cv2.FONT_HERSHEY_COMPLEX_SMALL, 1.3, (255,0,0), 2)
warning2 = 1
else:
warning2 = 0
#지표 그리기
indicator(frame, total_cycletime, basket_cycletime, soccer_cycletime, count, basketball_count, soccerball_count,
in_count, basket_in, soccer_in, out_count, basket_out, soccer_out)
# send message to server
#message = "{} {} {} {} {} {} {} {} {} {} {} {} {} {} ".format(in_count, out_count, total_cycletime, count, warning1, warning2, basket_in, basket_out, basket_cycletime, basketball_count,soccer_in, soccer_out, soccer_cycletime, soccerball_count)
#client_socket.send(message.encode())
# calculate frames per second of running detections
fps = 1.0 / (time.time() - start_time)
print("FPS: %.2f" % fps)
result = np.asarray(frame)
result = cv2.cvtColor(frame, cv2.COLOR_RGB2BGR)
if not FLAGS.dont_show:
cv2.imshow("Output Video", result)
if cv2.waitKey(1) & 0xFF == ord('q'): break
cv2.destroyAllWindows()
if __name__ == '__main__':
try:
app.run(main)
except SystemExit:
pass