-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathL5.hoc
executable file
·561 lines (515 loc) · 20.6 KB
/
L5.hoc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
/*----------------------------------------------------------------------------
FULL CORTICAL LAYER 5 MODEL
===========================
The cortical layer 5 is comprised of two layers - the excitatory and
inhibitory cell layers. The excitatory cell layer has 50 RS, 40 IB, and
10 cortical pacemaker cells. The inhibitory layer contains 25 FS cells.
A second version of this layer is adjusted so that the excitatory layer
has 50 RS, 15 IB, 10 pacemaker, and 25 RIB cells. The latter version is
supposed to be pathological leading to SWDs.
Written by Martynas Dervinis, Cardiff University, 2014.
----------------------------------------------------------------------------*/
objref cellTypeInd, devRi, cells, RScells, EFcells, IBcells, RIBcells, NDcells, PYcells, FScells
objref RSgids, EFgids, IBgids, RIBgids, NDgids, PYgids, FSgids, nodeGids, nodePYgids, nodeFSgids
objref nclist, ncPYPYAMPA, ncPYPYNMDA, ncPYINAMPA, ncPYINNMDA, ncINPYGABAa, ncINPYGABAb
objref delPYPY, delPYIN, delINPY, weiPYPYAMPA, weiPYPYNMDA, weiPYINAMPA, weiPYINNMDA, weiINPYGABAa, weiINPYGABAb
objref ncPYPY, ncPYIN, ncINPY, weiPYPY, weiPYIN, weiINPY
objref ncPYminisAMPAin, ncPYminisAMPAout, ncPYminisGABAain, ncPYminisGABAaout, ncINminisAMPAin, ncINminisAMPAout
objref ncSpike, tvec, idvec, nil
// Model parameters:
ExcInFact = 1/2.35
synFact = 0.11
PYPYfact = synFact*ExcInFact*2*1.1
PYINfact = synFact*ExcInFact*2*0.23
INPYfact = synFact*(1/ExcInFact)*2*0.4
fanoutFact = 100
fanoutPYPY = fanoutFact*8 + 1 // only 9, 17, 25, etc... Increments of 8
fanoutPYIN = fanoutFact*2 // only 2, 4, 6, etc... Increments of 2
fanoutINPY = fanoutFact*8 // only 8, 16, 24, etc... Increments of 8
delay = 2 // must be >0.6
// ------------------------------------------------------------------------
// Create models of single cells:
// ------------------------------------------------------------------------
tvec = new Vector() // will be Vectors that record all spike times (tvec)
idvec = new Vector() // and the corresponding id numbers of the cells that spiked (idvec)
ncSpike = new List()
ngids = 125
cells = new List()
RScells = new List()
EFcells = new List()
IBcells = new List()
RIBcells = new List()
NDcells = new List()
PYcells = new List()
FScells = new List()
nodeGids = new Vector()
nodePYgids = new Vector()
nodeFSgids = new Vector()
RSgids = new Vector(0.24*ngids) // 30/125
EFgids = new Vector(0.16*ngids) // 20/125
if (modelType == 15) {
IBgids = new Vector(0.32*ngids) // 40/125
} else if (modelType == 16) {
IBgids = new Vector(0.12*ngids) // 15/125
RIBgids = new Vector(0.2*ngids) // 25/125
}
NDgids = new Vector(0.08*ngids) // 10/125
PYgids = new Vector(0.8*ngids) // 100/125
FSgids = new Vector(0.2*ngids) // 25/125
// Set the positions of cells within the network:
if (pc.id == 0) {
if (randomise.x[0]) {
cellTypeInd = randExhaust(r, 0, PYgids.size()-1)
randomInstance += 1
for i = cellTypeInd.size(), ngids-1 {
cellTypeInd.append(i)
}
} else {
cellTypeInd = vecIncrement(0,1,ngids-1)
}
} else {
cellTypeInd = new Vector()
}
if (pProc) {
{pc.barrier()}
pc.broadcast(cellTypeInd, 0)
}
// Randomly pick input resistance deviations for each cell:
devRi = new Vector(ngids)
if (pc.id == 0) {
if (randomise.x[1]) {
{r.Random123(randomInstance,0)}
r.normal(0,1)
for i = 0, ngids-1 {
devRi.x[i] = normRepick(r)
}
randomInstance += 1
}
}
if (pProc) {
{pc.barrier()}
pc.broadcast(devRi, 0)
}
AMPAsynsPY = fanoutPYPY-1
GABAAsynsPY = fanoutINPY*FSgids.size()/PYgids.size()
AMPAsynsIN = fanoutPYIN*PYgids.size()/FSgids.size()
proc createMini() { // $o1 - a cell; $2 - a random stream id2; $3 - number of AMPA synapses per cell;
// $4 - number of GABAAsynapses per cell.
$o1.createMini("AMPA", $2, $3)
$o1.createMini("GABAa", $2, $4)
}
proc createCells() {local i, j, k, l, m, n, o, x, gid localobj cell, mini, nc
if (pProc) {
for cellitr(&gid, pc) {
pc.set_gid2node(gid, pc.id)
if (cellTypeInd.x[gid] <= 0.24*ngids-1) {
cell = new Cx3cell(9)
RScells.append(cell)
PYcells.append(cell)
if (randomise.x[4]) {
createMini(cell, cellTypeInd.x[gid], AMPAsynsPY, GABAAsynsPY)
}
nodePYgids.append(gid)
} else if (cellTypeInd.x[gid] <= 0.4*ngids-1) {
cell = new Cx3cell(10)
EFcells.append(cell)
PYcells.append(cell)
if (randomise.x[4]) {
createMini(cell, cellTypeInd.x[gid], AMPAsynsPY, GABAAsynsPY)
}
nodePYgids.append(gid)
} else if (modelType == 15 && cellTypeInd.x[gid] <= 0.72*ngids-1) {
cell = new Cx3cell(11)
IBcells.append(cell)
PYcells.append(cell)
if (randomise.x[4]) {
createMini(cell, cellTypeInd.x[gid], AMPAsynsPY, GABAAsynsPY)
}
nodePYgids.append(gid)
} else if (modelType == 16 && cellTypeInd.x[gid] <= 0.52*ngids-1) {
cell = new Cx3cell(11)
IBcells.append(cell)
PYcells.append(cell)
if (randomise.x[4]) {
createMini(cell, cellTypeInd.x[gid], AMPAsynsPY, GABAAsynsPY)
}
nodePYgids.append(gid)
} else if (modelType == 16 && cellTypeInd.x[gid] <= 0.72*ngids-1) {
cell = new Cx3cell(12)
RIBcells.append(cell)
PYcells.append(cell)
if (randomise.x[4]) {
createMini(cell, cellTypeInd.x[gid], AMPAsynsPY, GABAAsynsPY)
}
nodePYgids.append(gid)
} else if (cellTypeInd.x[gid] <= 0.8*ngids-1) {
cell = new Cx3cell(13)
NDcells.append(cell)
PYcells.append(cell)
if (randomise.x[4]) {
createMini(cell, cellTypeInd.x[gid], AMPAsynsPY, GABAAsynsPY)
}
nodePYgids.append(gid)
} else if (cellTypeInd.x[gid] <= ngids-1) {
cell = new Cx3cell(14)
FScells.append(cell)
if (randomise.x[4]) {
cell.createMini("AMPA", cellTypeInd.x[gid], AMPAsynsIN)
}
nodeFSgids.append(gid)
}
nc = cell.connect2target(nil, 1, 1)
pc.cell(gid, nc)
//pc.spike_record(gid, tvec, idvec)
ncSpike.append(nc)
cells.append(cell)
nodeGids.append(gid)
if (randomise.x[1] == 1) {
x = normRepick(r)
cell.soma.g_pas(0.5) = cell.soma.g_pas(0.5) + 0.000001*devRi.x[cellTypeInd.x[gid]]
cell.dend.g_pas(0.5) = cell.dend.g_pas(0.5) + 0.000001*devRi.x[cellTypeInd.x[gid]]
}
}
} else {
for gid = 0, ngids-1 {
if (cellTypeInd.x[gid] <= 0.24*ngids-1) {
cell = new Cx3cell(9)
RScells.append(cell)
PYcells.append(cell)
if (randomise.x[4]) {
createMini(cell, cellTypeInd.x[gid], AMPAsynsPY, GABAAsynsPY)
}
nodePYgids.append(gid)
} else if (cellTypeInd.x[gid] <= 0.4*ngids-1) {
cell = new Cx3cell(10)
EFcells.append(cell)
PYcells.append(cell)
if (randomise.x[4]) {
createMini(cell, cellTypeInd.x[gid], AMPAsynsPY, GABAAsynsPY)
}
nodePYgids.append(gid)
} else if (modelType == 15 && cellTypeInd.x[gid] <= 0.72*ngids-1) {
cell = new Cx3cell(11)
IBcells.append(cell)
PYcells.append(cell)
if (randomise.x[4]) {
createMini(cell, cellTypeInd.x[gid], AMPAsynsPY, GABAAsynsPY)
}
nodePYgids.append(gid)
} else if (modelType == 16 && cellTypeInd.x[gid] <= 0.52*ngids-1) {
cell = new Cx3cell(11)
IBcells.append(cell)
PYcells.append(cell)
if (randomise.x[4]) {
createMini(cell, cellTypeInd.x[gid], AMPAsynsPY, GABAAsynsPY)
}
nodePYgids.append(gid)
} else if (modelType == 16 && cellTypeInd.x[gid] <= 0.72*ngids-1) {
cell = new Cx3cell(12)
RIBcells.append(cell)
PYcells.append(cell)
if (randomise.x[4]) {
createMini(cell, cellTypeInd.x[gid], AMPAsynsPY, GABAAsynsPY)
}
nodePYgids.append(gid)
} else if (cellTypeInd.x[gid] <= 0.8*ngids-1) {
cell = new Cx3cell(13)
NDcells.append(cell)
PYcells.append(cell)
if (randomise.x[4]) {
createMini(cell, cellTypeInd.x[gid], AMPAsynsPY, GABAAsynsPY)
}
nodePYgids.append(gid)
} else if (cellTypeInd.x[gid] <= ngids-1) {
cell = new Cx3cell(14)
FScells.append(cell)
if (randomise.x[4]) {
cell.createMini("AMPA", cellTypeInd.x[gid], AMPAsynsIN)
}
nodeFSgids.append(gid)
}
nc = cell.connect2target(nil, 1, 1)
//nc.record(tvec, idvec)
ncSpike.append(nc)
cells.append(cell)
nodeGids.append(gid)
if (randomise.x[1] == 1) {
x = normRepick(r)
cell.soma.g_pas(0.5) = cell.soma.g_pas(0.5) + 0.000001*devRi.x[cellTypeInd.x[gid]]
cell.dend.g_pas(0.5) = cell.dend.g_pas(0.5) + 0.000001*devRi.x[cellTypeInd.x[gid]]
}
}
}
i = 0
j = 0
k = 0
l = 0
m = 0
n = 0
o = 0
for gid = 0, ngids-1 {
if (cellTypeInd.x[gid] <= 0.24*ngids-1) {
RSgids.x[i] = gid
i += 1
PYgids.x[n] = gid
n += 1
} else if (cellTypeInd.x[gid] <= 0.4*ngids-1) {
EFgids.x[j] = gid
j += 1
PYgids.x[n] = gid
n += 1
} else if (modelType == 15 && cellTypeInd.x[gid] <= 0.72*ngids-1) {
IBgids.x[k] = gid
k += 1
PYgids.x[n] = gid
n += 1
} else if (modelType == 16 && cellTypeInd.x[gid] <= 0.52*ngids-1) {
IBgids.x[k] = gid
k += 1
PYgids.x[n] = gid
n += 1
} else if (modelType == 16 && cellTypeInd.x[gid] <= 0.72*ngids-1) {
RIBgids.x[l] = gid
l += 1
PYgids.x[n] = gid
n += 1
} else if (cellTypeInd.x[gid] <= 0.8*ngids-1) {
NDgids.x[m] = gid
m += 1
PYgids.x[n] = gid
n += 1
} else if (cellTypeInd.x[gid] <= ngids-1) {
FSgids.x[o] = gid
o += 1
}
}
}
createCells()
// ------------------------------------------------------------------------
// Create the network:
// ------------------------------------------------------------------------
syns = 1
combinedSyns = 1 // Combined AMPA+NMDA and GABAa+GABAb synapses for release probs of <1
if (syns) {
// Randomise synaptic delays:
delPYPY = new Vector(0.8*ngids*fanoutPYPY)
delPYIN = new Vector(0.8*ngids*fanoutPYIN)
delINPY = new Vector(0.2*ngids*fanoutINPY)
if ((pProc && pc.id == 0) || !pProc) {
if (randomise.x[2]) {
{r.Random123(randomInstance,0)}
r.normal(0,1)
for i = 0,delPYPY.size()-1 {
x = normRepick(r)
delPYPY.x[i] = delay + 0.25*x
if (delPYPY.x[i] <= 0.6) {
delPYPY.x[i] = 0.61
}
}
for i = 0,delPYIN.size()-1 {
x = normRepick(r)
delPYIN.x[i] = delay + 0.25*x
if (delPYIN.x[i] <= 0.6) {
delPYIN.x[i] = 0.61
}
}
for i = 0,delINPY.size()-1 {
x = normRepick(r)
delINPY.x[i] = delay + 0.25*x
if (delINPY.x[i] <= 0.6) {
delINPY.x[i] = 0.61
}
}
randomInstance += 1
} else {
for i = 0,delPYPY.size()-1 {
delPYPY.x[i] = delay
if (delPYPY.x[i] <= 0.6) {
delPYPY.x[i] = 0.61
}
}
for i = 0,delPYIN.size()-1 {
delPYIN.x[i] = delay
if (delPYIN.x[i] <= 0.6) {
delPYPY.x[i] = 0.61
}
}
for i = 0,delINPY.size()-1 {
delINPY.x[i] = delay
if (delINPY.x[i] <= 0.6) {
delPYPY.x[i] = 0.61
}
}
}
}
if (pProc) {
{pc.barrier()}
pc.broadcast(delPYPY, 0)
pc.broadcast(delPYIN, 0)
pc.broadcast(delINPY, 0)
}
if (combinedSyns || randomise.x[5]) {
// Randomise synaptic weights:
weiPYPY = new Vector(0.8*ngids*fanoutPYPY)
weiPYIN = new Vector(0.8*ngids*fanoutPYIN)
weiINPY = new Vector(0.2*ngids*fanoutINPY)
if ((pProc && pc.id == 0) || !pProc) {
if (randomise.x[3]) {
{r.Random123(randomInstance,0)}
r.normal(0,1)
for i = 0,weiPYPY.size()-1 {
x = normRepick(r)
weiPYPY.x[i] = (1 + 0.05*x)*PYPYfact
}
for i = 0,weiPYIN.size()-1 {
x = normRepick(r)
weiPYIN.x[i] = (1 + 0.05*x)*PYINfact
}
for i = 0,weiINPY.size()-1 {
x = normRepick(r)
weiINPY.x[i] = (1 + 0.05*x)*INPYfact
}
randomInstance += 1
} else {
for i = 0,weiPYPY.size()-1 {
weiPYPY.x[i] = PYPYfact
}
for i = 0,weiPYIN.size()-1 {
weiPYIN.x[i] = PYINfact
}
for i = 0,weiINPY.size()-1 {
weiINPY.x[i] = INPYfact
}
}
}
if (pProc) {
{pc.barrier()}
pc.broadcast(weiPYPY, 0)
pc.broadcast(weiPYIN, 0)
pc.broadcast(weiINPY, 0)
}
// Create PY-PY AMPA and NMDA synapses and connect them to the source:
createSyns(PYcells, nodePYgids, "GLU", pc)
nclist = connectSyns(PYcells, PYgids, PYcells, PYgids, fanoutPYPY, "GLU", delPYPY, weiPYPY, 0, pc, randomise.x[4])
ncPYPY = nclist.o(0)
if (randomise.x[4]) {
ncPYminisAMPAin = nclist.o(1)
weight = 1.1 // 1.1: 0.5mV //weiPYPY.mean()/2
ncPYminisAMPAout = connectMinis(PYcells, 0.6, weight, "GLU")
}
// Create PY-IN AMPA and NMDA synapses and connect them to the source:
createSyns(FScells, nodeFSgids, "GLU", pc)
nclist = connectSyns(PYcells, PYgids, FScells, FSgids, fanoutPYIN, "GLU", delPYIN, weiPYIN, 1, pc, randomise.x[4])
ncPYIN = nclist.o(0)
if (randomise.x[4]) {
ncINminisAMPAin = nclist.o(1)
weight = 0.23 // 0.23: 0.5mV //weiPYIN.mean()/2
ncINminisAMPAout = connectMinis(FScells, 0.6, weight, "GLU")
}
// Create IN-PY GABAa and GABAb synapses and connect them to the source:
createSyns(PYcells, nodePYgids, "GABA", pc)
nclist = connectSyns(FScells, FSgids, PYcells, PYgids, fanoutINPY, "GABA", delINPY, weiINPY, 1, pc, randomise.x[4])
ncINPY = nclist.o(0)
if (randomise.x[4]) {
ncPYminisGABAain = nclist.o(1)
weight = 0.4 // 0.4: 0.25mV @ -71.9mV, 0.55mV @ -64.6 mV; 0.8: 0.5mV, 1.1mV //weiINPY.mean()/2
ncPYminisGABAaout = connectMinis(PYcells, 0.6, weight, "GABA")
}
} else {
weiPYPYAMPA = new Vector(0.8*ngids*fanoutPYPY)
weiPYPYNMDA = new Vector(0.8*ngids*fanoutPYPY)
weiPYINAMPA = new Vector(0.8*ngids*fanoutPYIN)
weiPYINNMDA = new Vector(0.8*ngids*fanoutPYIN)
weiINPYGABAa = new Vector(0.2*ngids*fanoutINPY)
weiINPYGABAb = new Vector(0.2*ngids*fanoutINPY)
if ((pProc && pc.id == 0) || !pProc) {
if (randomise.x[3]) {
{r.Random123(randomInstance,0)}
r.normal(0,1)
for i = 0,weiPYPYAMPA.size()-1 {
x = normRepick(r)
weiPYPYAMPA.x[i] = (1 + 0.05*x)*PYPYfact
//x = normRepick(r)
weiPYPYNMDA.x[i] = (1 + 0.05*x)*PYPYfact*0.00076
}
for i = 0,weiPYINAMPA.size()-1 {
x = normRepick(r)
weiPYINAMPA.x[i] = (1 + 0.05*x)*PYINfact
//x = normRepick(r)
weiPYINNMDA.x[i] = (1 + 0.05*x)*PYINfact*0.00076
}
for i = 0,weiINPYGABAa.size()-1 {
x = normRepick(r)
weiINPYGABAa.x[i] = (1 + 0.05*x)*INPYfact
//x = normRepick(r)
weiINPYGABAb.x[i] = (1 + 0.05*x)*INPYfact
}
randomInstance += 1
} else {
for i = 0,weiPYPYAMPA.size()-1 {
weiPYPYAMPA.x[i] = PYPYfact
weiPYPYNMDA.x[i] = PYPYfact*0.00076
}
for i = 0,weiPYINAMPA.size()-1 {
weiPYINAMPA.x[i] = PYINfact
weiPYINNMDA.x[i] = PYINfact*0.00076
}
for i = 0,weiINPYGABAa.size()-1 {
weiINPYGABAa.x[i] = INPYfact
weiINPYGABAb.x[i] = INPYfact
}
}
}
if (pProc) {
{pc.barrier()}
pc.broadcast(weiPYPYAMPA, 0)
pc.broadcast(weiPYPYNMDA, 0)
pc.broadcast(weiPYINAMPA, 0)
pc.broadcast(weiPYINNMDA, 0)
pc.broadcast(weiINPYGABAa, 0)
pc.broadcast(weiINPYGABAb, 0)
}
// Create PY-PY AMPA synapses and connect them to the source:
createSyns(PYcells, nodePYgids, "AMPA", pc)
nclist = connectSyns(PYcells, PYgids, PYcells, PYgids, fanoutPYPY, "AMPA", delPYPY, weiPYPYAMPA, 0, pc, randomise.x[4])
ncPYPYAMPA = nclist.o(0)
if (randomise.x[4]) {
ncPYminisAMPAin = nclist.o(1)
weight = 1.1 // 1.1: 0.5mV //weiPYPYAMPA.mean()/2
ncPYminisAMPAout = connectMinis(PYcells, 0.6, weight, "AMPA")
}
// Create PY-PY NMDA synapses and connect them to the source:
createSyns(PYcells, nodePYgids, "NMDA2", pc)
nclist = connectSyns(PYcells, PYgids, PYcells, PYgids, fanoutPYPY, "NMDA2", delPYPY, weiPYPYNMDA, 0, pc, 0)
ncPYPYNMDA = nclist.o(0)
// Create PY-IN AMPA synapses and connect them to the source:
createSyns(FScells, nodeFSgids, "AMPA", pc)
nclist = connectSyns(PYcells, PYgids, FScells, FSgids, fanoutPYIN, "AMPA", delPYIN, weiPYINAMPA, 1, pc, randomise.x[4])
ncPYINAMPA = nclist.o(0)
if (randomise.x[4]) {
ncINminisAMPAin = nclist.o(1)
weight = 0.23 // 0.23: 0.5mV //weiPYINAMPA.mean()/2
ncINminisAMPAout = connectMinis(FScells, 0.6, weight, "AMPA")
}
// Create PY-IN NMDA synapses and connect them to the source:
createSyns(FScells, nodeFSgids, "NMDA2", pc)
nclist = connectSyns(PYcells, PYgids, FScells, FSgids, fanoutPYIN, "NMDA2", delPYIN, weiPYINNMDA, 1, pc, 0)
ncPYINNMDA = nclist.o(0)
// Create IN-PY GABAa synapses and connect them to the source:
createSyns(PYcells, nodePYgids, "GABAa", pc)
nclist = connectSyns(FScells, FSgids, PYcells, PYgids, fanoutINPY, "GABAa", delINPY, weiINPYGABAa, 1, pc, randomise.x[4])
ncINPYGABAa = nclist.o(0)
if (randomise.x[4]) {
ncPYminisGABAain = nclist.o(1)
weight = 0.4 // 0.4: 0.25mV @ -71.9mV, 0.55mV @ -64.6 mV; 0.8: 0.5mV, 1.1mV //weiINPYGABAa.mean()/2
ncPYminisGABAaout = connectMinis(PYcells, 0.6, weight, "GABAa")
}
// Create IN-PY GABAb synapses and connect them to the source:
createSyns(PYcells, nodePYgids, "GABAb", pc)
nclist = connectSyns(FScells, FSgids, PYcells, PYgids, fanoutINPY, "GABAb", delINPY, weiINPYGABAb, 1, pc, 0)
ncINPYGABAb = nclist.o(0)
}
}
if (pProc) {
pc.setup_transfer()
}