-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathCx1cell.hoc
executable file
·228 lines (181 loc) · 6.39 KB
/
Cx1cell.hoc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
/*----------------------------------------------------------------------------
CORTICAL EXCITATORY CELL
=================================
Simulations of a double-compartment model of a cortical excitatory cell.
The model was originally described by [1] which itself is an adaptation
of another model described by [2]. It consists of two, dendritic and
axo-somatic, compartments coupled via resistance, kappa, and related
via the ratio of the membrane surface areas, rho. The cell may have a
different membrane potential response depending on the values of these
parameters. Hence, it may be classed as regular-spiking (RS),
intrinsically bursting (IB), or fast-spiking (FS). For more details see
ref. [1].
The cell is adapted to be used in parallel network simulations if
necessary.
The following active currents are included in the model (the references
describing the models are provided in the descriptions of the model
(.mod) files:
- HH mechanism: fast Na+ I_Na and K+ delayed rectifier I_K(DR)
currents. Required for action potential generation.
- I_M: slow non-inactivating muscarine-sensitive K+ current.
- I_HVA: high threshold calcium current.
- I_K[Ca]: Ca2+-activated K+ current I_K[Ca].
- I_AMPA
- I_NMDA
- I_GABAa
- I_GABAb
References:
[1] Mainen, Z.F. and Sejnowski, T.J. Influence of dendritic structure
on firing pattern in model neocortical neurons. Nature, 382: 363-
366, 1996.
[2] Pinsky, P.F. and Rinzel, J. Intrinsic and Network Rhythmogenesis in
a Reduced Traub Model for CA3 Neurons. Journal of Computational
Neuroseienee, 1: 39-60, 1994.
Written by Martynas Dervinis @Cardiff University, 2014.
----------------------------------------------------------------------------*/
begintemplate Cx1cell
public soma, dend, enarev, ekrev, rho, synlist, connect2target, AMPAsynapse, NMDAsynapse, GABAAsynapse, GABABsynapse
external cvode
objref kl, synlist, syn
create soma, dend
proc init() {
insertNil = 1
insertExC = 1
insertHH = 1
insertIM = 1
insertIHVA = 1
insertIKCa = 1
synlist = new List()
enarev = 50
ekrev = -90
ecarev = 140
rho = 175
soma {
diam = 5.644
L = 5.644
}
dend {
//diam = sqrt(rho)*soma.diam
//L = sqrt(rho)*soma.L
diam = 2*soma.diam
L = 0.5*rho*soma.L
}
connect dend(0), soma(1)
if (insertNil) {
/* soma {
insert pas
g_pas = 1/30000
e_pas = -70
cm = 0.75
Ra = 150
} */
dend {
insert pas // Passive properties and K+ leak current. Only applies to the dend compartment
g_pas = 1/30000
e_pas = -70
cm = 0.75
Ra = 150
insert cad // Intracellular [Ca2+] decay
depth_cad = 0.1
taux_cad = 200
cainf_cad = 100e-6
}
}
if (insertExC && !cvode.active()) {
forall {
insert extracellular // Extracellular fields for monitoring total membrane current
}
}
if (insertHH) {
soma { // HH mechanism
insert hhCx
ena = enarev
ek = ekrev
gnabar_hhCx = 30000E-4
gkbar_hhCx = 1500E-4
}
dend {
insert hhCx
ena = enarev
ek = ekrev
gnabar_hhCx = 15E-4
gkbar_hhCx = 0
}
}
if (insertIM) {
dend { // I_M current
insert im
ek = ekrev
gkbar_im = 0.1E-4
}
}
if (insertIHVA) {
dend { // I_HVA current
insert ihvaCx
eca = ecarev
gcabar_ihvaCx = 0.3E-4
}
}
if (insertIKCa) {
dend { // I_K[Ca] current
insert ikca
ek = ekrev
gkbar_ikca = 3E-4
}
}
//forall nseg = int((L/(0.1*lambda_f(100))+0.9)/2)*2 + 1 // Lambda rule
forall nseg = 1
}
obfunc connect2target() {localobj nc //$o1 - target process, $2 - connection delay, $3 - connection weight
soma nc = new NetCon(&v(0.5), $o1)
nc.threshold = -15
nc.delay = $2
nc.weight = $3
return nc
}
proc AMPAsynapse() {
soma syn = new AMPA_S(0.5)
syn.gbar = 0.0148
syn.Alpha = 50
syn.Beta = 2
syn.Cmax = 0.5
syn.Cdur = 0.3
syn.Erev = $1
synlist.append(syn)
}
proc NMDAsynapse() {localobj syn
soma syn = new NMDA_S(0.5)
syn.gbar = 0.01
syn.Alpha = 0.71
syn.Beta = 0.03
syn.Cmax = 0.5
syn.Cdur = 0.3
syn.Erev = $1
syn.mg = 0.2
synlist.append(syn)
}
proc GABAAsynapse() { // $1 - GABAa channel reversal potential
soma syn = new GABAa_S(0.5)
syn.gbar = 1 // 1, 0.006, 0.16, 0.5, 1.4, -80: 75.104 pA, 1.13 ms, 6.92 ms
syn.Alpha = 0.006
syn.Beta = 0.16
syn.Cmax = 0.5
syn.Cdur = 1.4
syn.Erev = $1
synlist.append(syn)
}
proc GABABsynapse() {
soma syn = new GABAb_S(0.5)
syn.gbar = 0.61 // 0.61, 0.2, 0.0028, 0.28, 0.45, 100, 4, -90, 0.5, 1.4: -2.9956 mV, 108.77 ms, 82.72 ms (in response to a burst)
syn.K1 = 0.2 // (/ms mM) forward binding rate to receptor
syn.K2 = 0.0028 // (/ms) backward (unbinding) rate of receptor
syn.K3 = 0.28 // (/ms) rate of G-protein production
syn.K4 = 0.45 // (/ms) rate of G-protein decay
syn.KD = 100 // dissociation constant of K+ channel
syn.n = 4 // nb of binding sites of G-protein on K+
syn.Erev = $1 // (mV) reversal potential (E_K)
syn.Cmax = 0.5 // short pulses
syn.Cdur = 1.4
synlist.append(syn)
}
endtemplate Cx1cell