-
Notifications
You must be signed in to change notification settings - Fork 30
/
Copy pathtrain_qa.py
193 lines (163 loc) · 7.82 KB
/
train_qa.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
import numpy as np
import json, os, logging, pickle, argparse
from evaluate_squad import compute_f1
from simpletransformers.question_answering import QuestionAnsweringModel
def lcs(S,T):
m = len(S)
n = len(T)
counter = [[0]*(n+1) for x in range(m+1)]
longest = 0
lcs_set = set()
for i in range(m):
for j in range(n):
if S[i] == T[j]:
c = counter[i][j] + 1
counter[i+1][j+1] = c
if c > longest:
lcs_set = set()
longest = c
lcs_set.add(S[i-c+1:i+1])
elif c == longest:
lcs_set.add(S[i-c+1:i+1])
return lcs_set
def evaluate_results(text):
partial_match_scores = []
lcs_all = []
impos1, impos2, impos3, impos4 = 0, 0, 0, 0
pos1, pos2, pos3 = 0, 0, 0
fscores, squad_fscores = [], []
for i, key in enumerate(['correct_text', 'similar_text', 'incorrect_text']):
for item in text[key]:
if i==0:
if 'impossible' in item and text[key][item]['predicted'] == '':
impos1 += 1
elif 'span' in item:
pos1 += 1
fscores.append(1)
squad_fscores.append(1)
elif i==1:
if 'impossible' in item:
impos2 += 1
elif 'span' in item:
z = text[key][item]
if z['predicted'] != '':
longest_match = list(lcs(z['truth'], z['predicted']))[0]
lcs_all.append(longest_match)
partial_match_scores.append(round(len(longest_match.split())/len(z['truth'].split()), 4))
pos2 += 1
r = len(longest_match.split())/len(z['truth'].split())
p = len(longest_match.split())/len(z['predicted'].split())
f = 2*p*r/(p+r)
fscores.append(f)
squad_fscores.append(compute_f1(z['truth'], z['predicted']))
else:
pos3 += 1
impos4 += 1
fscores.append(0)
squad_fscores.append(0)
if i==2:
if 'impossible' in item:
impos3 += 1
elif 'span' in item:
if z['predicted'] == '':
impos4 += 1
pos3 += 1
fscores.append(0)
squad_fscores.append(0)
total_pos = pos1 + pos2 + pos3
imr = impos2/(impos2+impos3)
imp = impos2/(impos2+impos4)
imf = 2*imp*imr/(imp+imr)
p1 = 'Postive Samples:'
p2 = 'Exact Match: {}/{} = {}%'.format(pos1, total_pos, round(100*pos1/total_pos, 2))
p3 = 'Partial Match: {}/{} = {}%'.format(pos2, total_pos, round(100*pos2/total_pos, 2))
p4a = 'LCS F1 Score = {}%'.format(round(100*np.mean(fscores), 2))
p4b = 'SQuAD F1 Score = {}%'.format(round(100*np.mean(squad_fscores), 2))
p5 = 'No Match: {}/{} = {}%'.format(pos3, total_pos, round(100*pos3/total_pos, 2))
p6 = '\nNegative Samples'
p7 = 'Inv F1 Score = {}%'.format(round(100*imf, 2))
# p7a = 'Inv Recall: {}/{} = {}%'.format(impos2, impos2+impos3, round(100*imr, 2))
# p7b = 'Inv Precision: {}/{} = {}%'.format(impos2, impos2+impos4, round(100*imp, 2))
p = '\n'.join([p1, p2, p3, p4a, p4b, p5, p6, p7])
return p
if __name__ == '__main__':
global args
parser = argparse.ArgumentParser()
parser.add_argument('--lr', type=float, default=1e-5, metavar='LR', help='Initial learning rate')
parser.add_argument('--batch-size', type=int, default=16, metavar='BS', help='batch size')
parser.add_argument('--epochs', type=int, default=12, metavar='E', help='number of epochs')
parser.add_argument('--model', default='rob', help='which model rob | span')
parser.add_argument('--fold', type=int, default=1, metavar='F', help='which fold')
parser.add_argument('--context', action='store_true', default=False, help='use context')
parser.add_argument('--cuda', type=int, default=0, metavar='C', help='cuda device')
args = parser.parse_args()
print(args)
model_family = {'rob': 'roberta', 'span': 'bert'}
model_id = {'rob': 'roberta-base', 'span': 'spanbert-squad'}
model_exact_id = {'rob': 'roberta-base', 'span': 'mrm8488/spanbert-finetuned-squadv2'}
lr = args.lr
batch_size = args.batch_size
epochs = args.epochs
model = args.model
fold = str(args.fold)
context = args.context
cuda = args.cuda
dataset = 'dailydialog'
if context == False:
max_q_length, max_c_length, max_a_length = 400, 400, 160
elif context == True:
max_q_length, max_c_length, max_a_length = 512, 512, 200
if context == False:
save_dir = 'outputs/' + model_id[model] + '-dailydialog-qa-without-context-fold' + fold + '/'
result_file = 'outputs/' + model_id[model] + '-dailydialog-qa-without-context-fold' + fold + '/results.txt'
dump_file = 'outputs/' + model_id[model] + '-dailydialog-qa-without-context-fold' + fold + '/test_predictions.pkl'
x_train = json.load(open('data/subtask1/fold' + fold + '/dailydialog_qa_train_without_context.json'))
x_valid = json.load(open('data/subtask1/fold' + fold + '/dailydialog_qa_valid_without_context.json'))
x_test = json.load(open('data/subtask1/fold' + fold + '/dailydialog_qa_test_without_context.json'))
else:
save_dir = 'outputs/' + model_id[model] + '-dailydialog-qa-with-context-fold' + fold + '/'
result_file = 'outputs/' + model_id[model] + '-dailydialog-qa-with-context-fold' + fold + '/results.txt'
dump_file = 'outputs/' + model_id[model] + '-dailydialog-qa-with-context-fold' + fold + '/test_predictions.pkl'
x_train = json.load(open('data/subtask1/fold' + fold + '/dailydialog_qa_train_with_context.json'))
x_valid = json.load(open('data/subtask1/fold' + fold + '/dailydialog_qa_valid_with_context.json'))
x_test = json.load(open('data/subtask1/fold' + fold + '/dailydialog_qa_test_with_context.json'))
if fold == '1':
num_steps = int(27915/batch_size)
else:
num_steps = int(25697/batch_size)
train_args = {
'fp16': False,
'overwrite_output_dir': True,
'doc_stride': 512,
'max_query_length': max_q_length,
'max_answer_length': max_a_length,
"max_seq_length": max_c_length,
'n_best_size': 20,
'null_score_diff_threshold': 0.0,
'learning_rate': lr,
'sliding_window': False,
'output_dir': save_dir,
'best_model_dir': save_dir + 'best_model/',
'evaluate_during_training': True,
'evaluate_during_training_steps': num_steps,
'save_eval_checkpoints': False,
'save_model_every_epoch': False,
'save_steps': 500000,
'train_batch_size': batch_size,
'num_train_epochs': epochs
}
qa_model = QuestionAnsweringModel(model_family[model], model_exact_id[model], args=train_args, cuda_device=cuda)
qa_model.train_model(x_train, eval_data=x_valid)
qa_model = QuestionAnsweringModel(model_family[model], save_dir + 'best_model/', args=train_args, cuda_device=cuda)
result, text = qa_model.eval_model(x_test)
r = evaluate_results(text)
print (r)
rf = open('results/dailydialog_qa.txt', 'a')
rf.write(str(args) + '\n\n')
rf.write(r + '\n' + '-'*40 + '\n')
rf.close()
rf = open(result_file, 'a')
rf.write(str(args) + '\n\n')
rf.write(r + '\n' + '-'*40 + '\n')
rf.close()
pickle.dump(text, open(dump_file, 'wb'))