You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
In end-to-end scan2cap, the relation graph's input is the origin proposals without nms. However in fixed-detector scan2cap, the relation graph's input is the origin proposals with nms. I think that's not a fair comparison.
I've performed experiments with pre-fetched votenet features without nms, and use train_pretrained.py to train the fix-detector's performance. The result shows that the fixed-detector one actually out-performs the end-to-end one.
The text was updated successfully, but these errors were encountered:
In end-to-end scan2cap, the relation graph's input is the origin proposals without nms. However in fixed-detector scan2cap, the relation graph's input is the origin proposals with nms. I think that's not a fair comparison.
I've performed experiments with pre-fetched votenet features without nms, and use
train_pretrained.py
to train the fix-detector's performance. The result shows that the fixed-detector one actually out-performs the end-to-end one.The text was updated successfully, but these errors were encountered: