Skip to content

Commit e020464

Browse files
authored
Fix CityDrive JSON join references (#2927)
1 parent e9aec99 commit e020464

File tree

4 files changed

+6
-6
lines changed

4 files changed

+6
-6
lines changed

docs/cn/guides/54-query/00-sql-analytics.md

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -101,8 +101,8 @@ SELECT f.frame_id,
101101
obj.value['type']::STRING AS detected_type,
102102
obj.value['confidence']::DOUBLE AS confidence
103103
FROM frame_events AS f
104-
JOIN frame_payloads AS p ON f.frame_id = p.frame_id,
105-
LATERAL FLATTEN(input => p.payload['objects']) AS obj
104+
JOIN frame_metadata_catalog AS meta ON meta.doc_id = f.frame_id,
105+
LATERAL FLATTEN(input => meta.meta_json['detections']['objects']) AS obj
106106
WHERE f.event_tag = 'pedestrian'
107107
ORDER BY confidence DESC;
108108
```

docs/cn/guides/54-query/02-vector-db.md

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -4,7 +4,7 @@ title: 向量搜索
44

55
> **场景:** CityDrive 把每个帧的嵌入直接存放在 Databend,语义相似搜索(“找出和它看起来像的帧”)便可与传统 SQL 分析一同运行,无需再部署独立的向量服务。
66
7-
`frame_embeddings` 表与 `frame_events``frame_payloads``frame_geo_points` 共用同一批 `frame_id`,让语义检索与常规 SQL 牢牢绑定在一起。
7+
`frame_embeddings` 表与 `frame_events``frame_metadata_catalog``frame_geo_points` 共用同一批 `frame_id`,让语义检索与常规 SQL 牢牢绑定在一起。
88

99
## 1. 准备嵌入表
1010
生产模型通常输出 512–1536 维,本例使用 512 维方便直接复制到演示集群。

docs/en/guides/54-query/00-sql-analytics.md

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -101,8 +101,8 @@ SELECT f.frame_id,
101101
obj.value['type']::STRING AS detected_type,
102102
obj.value['confidence']::DOUBLE AS confidence
103103
FROM frame_events AS f
104-
JOIN frame_payloads AS p ON f.frame_id = p.frame_id,
105-
LATERAL FLATTEN(input => p.payload['objects']) AS obj
104+
JOIN frame_metadata_catalog AS meta ON meta.doc_id = f.frame_id,
105+
LATERAL FLATTEN(input => meta.meta_json['detections']['objects']) AS obj
106106
WHERE f.event_tag = 'pedestrian'
107107
ORDER BY confidence DESC;
108108
```

docs/en/guides/54-query/02-vector-db.md

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -4,7 +4,7 @@ title: Vector Search
44

55
> **Scenario:** CityDrive keeps per-frame embeddings in Databend so semantic similarity search (“find frames that look like this”) runs alongside traditional SQL analytics—no extra vector service required.
66
7-
The `frame_embeddings` table shares the same `frame_id` keys as `frame_events`, `frame_payloads`, and `frame_geo_points`, which keeps semantic search and classic SQL glued together.
7+
The `frame_embeddings` table shares the same `frame_id` keys as `frame_events`, `frame_metadata_catalog`, and `frame_geo_points`, which keeps semantic search and classic SQL glued together.
88

99
## 1. Prepare the Embedding Table
1010
Production models tend to emit 512–1536 dimensions. The example below uses 512 so you can copy it straight into a demo cluster without changing the DDL.

0 commit comments

Comments
 (0)