-
Notifications
You must be signed in to change notification settings - Fork 33
/
Copy pathtorch-xfails.txt
158 lines (138 loc) · 11.4 KB
/
torch-xfails.txt
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
# Note: see array_api_compat/torch/_aliases.py for links to corresponding
# pytorch issues
# We cannot wrap the array object
# Indexing does not support negative step
array_api_tests/test_array_object.py::test_getitem
array_api_tests/test_array_object.py::test_setitem
# Masking doesn't suport 0 dimensions in the mask
array_api_tests/test_array_object.py::test_getitem_masking
# Overflow error from large inputs
array_api_tests/test_creation_functions.py::test_arange
# pytorch linspace bug (should be fixed in torch 2.0)
# We cannot wrap the tensor object
array_api_tests/test_has_names.py::test_has_names[array_method-__array_namespace__]
array_api_tests/test_has_names.py::test_has_names[array_method-to_device]
# We cannot wrap the tensor object
array_api_tests/test_operators_and_elementwise_functions.py::test_add[__add__(x1, x2)]
array_api_tests/test_operators_and_elementwise_functions.py::test_bitwise_and[__and__(x1, x2)]
array_api_tests/test_operators_and_elementwise_functions.py::test_bitwise_left_shift[__lshift__(x1, x2)]
array_api_tests/test_operators_and_elementwise_functions.py::test_bitwise_or[__or__(x1, x2)]
array_api_tests/test_operators_and_elementwise_functions.py::test_bitwise_right_shift[__rshift__(x1, x2)]
array_api_tests/test_operators_and_elementwise_functions.py::test_bitwise_right_shift[__irshift__(x1, x2)]
array_api_tests/test_operators_and_elementwise_functions.py::test_bitwise_xor[__xor__(x1, x2)]
array_api_tests/test_operators_and_elementwise_functions.py::test_divide[__truediv__(x1, x2)]
array_api_tests/test_operators_and_elementwise_functions.py::test_equal[__eq__(x1, x2)]
array_api_tests/test_operators_and_elementwise_functions.py::test_not_equal[__ne__(x1, x2)]
array_api_tests/test_operators_and_elementwise_functions.py::test_floor_divide[__floordiv__(x1, x2)]
array_api_tests/test_operators_and_elementwise_functions.py::test_greater[__gt__(x1, x2)]
array_api_tests/test_operators_and_elementwise_functions.py::test_greater_equal[__ge__(x1, x2)]
array_api_tests/test_operators_and_elementwise_functions.py::test_less[__lt__(x1, x2)]
array_api_tests/test_operators_and_elementwise_functions.py::test_less_equal[__le__(x1, x2)]
array_api_tests/test_operators_and_elementwise_functions.py::test_multiply[__mul__(x1, x2)]
array_api_tests/test_operators_and_elementwise_functions.py::test_pow[__pow__(x1, x2)]
# This test is skipped instead of xfailed because it causes core dumps on CI
# array_api_tests/test_operators_and_elementwise_functions.py::test_remainder[__mod__(x1, x2)]
array_api_tests/test_operators_and_elementwise_functions.py::test_remainder[__imod__(x1, x2)]
array_api_tests/test_operators_and_elementwise_functions.py::test_subtract[__sub__(x1, x2)]
# inverse trig functions are too inaccurate on CPU
array_api_tests/test_operators_and_elementwise_functions.py::test_acos
array_api_tests/test_operators_and_elementwise_functions.py::test_atan
array_api_tests/test_operators_and_elementwise_functions.py::test_asin
# Torch bug for remainder in some cases with large values
array_api_tests/test_operators_and_elementwise_functions.py::test_remainder[remainder(x1, x2)]
# unique_all cannot be implemented because torch's unique does not support
# returning indices
array_api_tests/test_set_functions.py::test_unique_all
# unique_inverse incorrectly counts nan values
# (https://github.com/pytorch/pytorch/issues/94106)
array_api_tests/test_set_functions.py::test_unique_inverse
# We cannot add attributes to the tensor object
array_api_tests/test_signatures.py::test_array_method_signature[__array_namespace__]
array_api_tests/test_signatures.py::test_array_method_signature[to_device]
# We do not attempt to work around special-case differences (most are on
# tensor methods which we couldn't fix anyway).
array_api_tests/test_special_cases.py::test_binary[__floordiv__(isfinite(x1_i) and x1_i < 0 and x2_i is +infinity) -> -0]
array_api_tests/test_special_cases.py::test_binary[__floordiv__(isfinite(x1_i) and x1_i < 0 and x2_i is -infinity) -> +0]
array_api_tests/test_special_cases.py::test_binary[__floordiv__(isfinite(x1_i) and x1_i > 0 and x2_i is +infinity) -> +0]
array_api_tests/test_special_cases.py::test_binary[__floordiv__(isfinite(x1_i) and x1_i > 0 and x2_i is -infinity) -> -0]
array_api_tests/test_special_cases.py::test_binary[__floordiv__(x1_i < 0 and x2_i is +0) -> -infinity]
array_api_tests/test_special_cases.py::test_binary[__floordiv__(x1_i < 0 and x2_i is -0) -> +infinity]
array_api_tests/test_special_cases.py::test_binary[__floordiv__(x1_i > 0 and x2_i is +0) -> +infinity]
array_api_tests/test_special_cases.py::test_binary[__floordiv__(x1_i > 0 and x2_i is -0) -> -infinity]
array_api_tests/test_special_cases.py::test_binary[__floordiv__(x1_i is +0 and x2_i < 0) -> -0]
array_api_tests/test_special_cases.py::test_binary[__floordiv__(x1_i is +0 and x2_i > 0) -> +0]
array_api_tests/test_special_cases.py::test_binary[__floordiv__(x1_i is +infinity and isfinite(x2_i) and x2_i < 0) -> -infinity]
array_api_tests/test_special_cases.py::test_binary[__floordiv__(x1_i is +infinity and isfinite(x2_i) and x2_i > 0) -> +infinity]
array_api_tests/test_special_cases.py::test_binary[__floordiv__(x1_i is -0 and x2_i < 0) -> +0]
array_api_tests/test_special_cases.py::test_binary[__floordiv__(x1_i is -0 and x2_i > 0) -> -0]
array_api_tests/test_special_cases.py::test_binary[__floordiv__(x1_i is -infinity and isfinite(x2_i) and x2_i < 0) -> +infinity]
array_api_tests/test_special_cases.py::test_binary[__floordiv__(x1_i is -infinity and isfinite(x2_i) and x2_i > 0) -> -infinity]
array_api_tests/test_special_cases.py::test_binary[__mod__(isfinite(x1_i) and x1_i < 0 and x2_i is +infinity) -> x2_i]
array_api_tests/test_special_cases.py::test_binary[__mod__(isfinite(x1_i) and x1_i < 0 and x2_i is -infinity) -> x1_i]
array_api_tests/test_special_cases.py::test_binary[__mod__(isfinite(x1_i) and x1_i > 0 and x2_i is +infinity) -> x1_i]
array_api_tests/test_special_cases.py::test_binary[__mod__(isfinite(x1_i) and x1_i > 0 and x2_i is -infinity) -> x2_i]
array_api_tests/test_special_cases.py::test_binary[__mod__(x1_i is +0 and x2_i < 0) -> -0]
array_api_tests/test_special_cases.py::test_binary[__mod__(x1_i is +0 and x2_i > 0) -> +0]
array_api_tests/test_special_cases.py::test_binary[__mod__(x1_i is -0 and x2_i < 0) -> -0]
array_api_tests/test_special_cases.py::test_binary[__mod__(x1_i is -0 and x2_i > 0) -> +0]
array_api_tests/test_special_cases.py::test_binary[floor_divide(isfinite(x1_i) and x1_i < 0 and x2_i is +infinity) -> -0]
array_api_tests/test_special_cases.py::test_binary[floor_divide(isfinite(x1_i) and x1_i > 0 and x2_i is -infinity) -> -0]
array_api_tests/test_special_cases.py::test_binary[floor_divide(x1_i is +infinity and isfinite(x2_i) and x2_i < 0) -> -infinity]
array_api_tests/test_special_cases.py::test_binary[floor_divide(x1_i is +infinity and isfinite(x2_i) and x2_i > 0) -> +infinity]
array_api_tests/test_special_cases.py::test_binary[floor_divide(x1_i is -infinity and isfinite(x2_i) and x2_i < 0) -> +infinity]
array_api_tests/test_special_cases.py::test_binary[floor_divide(x1_i is -infinity and isfinite(x2_i) and x2_i > 0) -> -infinity]
array_api_tests/test_special_cases.py::test_binary[remainder(x1_i is +0 and x2_i < 0) -> -0]
array_api_tests/test_special_cases.py::test_binary[remainder(x1_i is -0 and x2_i > 0) -> +0]
array_api_tests/test_special_cases.py::test_iop[__ifloordiv__(isfinite(x1_i) and x1_i < 0 and x2_i is +infinity) -> -0]
array_api_tests/test_special_cases.py::test_iop[__ifloordiv__(isfinite(x1_i) and x1_i > 0 and x2_i is -infinity) -> -0]
array_api_tests/test_special_cases.py::test_iop[__ifloordiv__(x1_i is +infinity and isfinite(x2_i) and x2_i < 0) -> -infinity]
array_api_tests/test_special_cases.py::test_iop[__ifloordiv__(x1_i is +infinity and isfinite(x2_i) and x2_i > 0) -> +infinity]
array_api_tests/test_special_cases.py::test_iop[__ifloordiv__(x1_i is -infinity and isfinite(x2_i) and x2_i < 0) -> +infinity]
array_api_tests/test_special_cases.py::test_iop[__ifloordiv__(x1_i is -infinity and isfinite(x2_i) and x2_i > 0) -> -infinity]
array_api_tests/test_special_cases.py::test_iop[__imod__(x1_i is +0 and x2_i < 0) -> -0]
array_api_tests/test_special_cases.py::test_iop[__imod__(x1_i is -0 and x2_i > 0) -> +0]
# Float correction is not supported by pytorch
# (https://github.com/data-apis/array-api-tests/issues/168)
array_api_tests/test_statistical_functions.py::test_std
array_api_tests/test_statistical_functions.py::test_var
# These functions do not yet support complex numbers
array_api_tests/test_operators_and_elementwise_functions.py::test_round
array_api_tests/test_set_functions.py::test_unique_counts
array_api_tests/test_set_functions.py::test_unique_values
# 2023.12 support
array_api_tests/test_has_names.py::test_has_names[manipulation-repeat]
array_api_tests/test_manipulation_functions.py::test_repeat
array_api_tests/test_signatures.py::test_func_signature[repeat]
# Argument 'device' missing from signature
array_api_tests/test_signatures.py::test_func_signature[from_dlpack]
# Argument 'max_version' missing from signature
array_api_tests/test_signatures.py::test_array_method_signature[__dlpack__]
# 2024.12 support
array_api_tests/test_signatures.py::test_func_signature[bitwise_and]
array_api_tests/test_signatures.py::test_func_signature[bitwise_left_shift]
array_api_tests/test_signatures.py::test_func_signature[bitwise_or]
array_api_tests/test_signatures.py::test_func_signature[bitwise_right_shift]
array_api_tests/test_signatures.py::test_func_signature[bitwise_xor]
array_api_tests/test_signatures.py::test_array_method_signature[__and__]
array_api_tests/test_signatures.py::test_array_method_signature[__lshift__]
array_api_tests/test_signatures.py::test_array_method_signature[__or__]
array_api_tests/test_signatures.py::test_array_method_signature[__rshift__]
array_api_tests/test_signatures.py::test_array_method_signature[__xor__]
# 2024.12 support: binary functions reject python scalar arguments
array_api_tests/test_operators_and_elementwise_functions.py::test_binary_with_scalars_real[atan2]
array_api_tests/test_operators_and_elementwise_functions.py::test_binary_with_scalars_real[copysign]
array_api_tests/test_operators_and_elementwise_functions.py::test_binary_with_scalars_real[divide]
array_api_tests/test_operators_and_elementwise_functions.py::test_binary_with_scalars_real[hypot]
array_api_tests/test_operators_and_elementwise_functions.py::test_binary_with_scalars_real[logaddexp]
array_api_tests/test_operators_and_elementwise_functions.py::test_binary_with_scalars_real[maximum]
array_api_tests/test_operators_and_elementwise_functions.py::test_binary_with_scalars_real[minimum]
# https://github.com/pytorch/pytorch/issues/149815
array_api_tests/test_operators_and_elementwise_functions.py::test_binary_with_scalars_real[equal]
array_api_tests/test_operators_and_elementwise_functions.py::test_binary_with_scalars_real[not_equal]
array_api_tests/test_operators_and_elementwise_functions.py::test_binary_with_scalars_real[less]
array_api_tests/test_operators_and_elementwise_functions.py::test_binary_with_scalars_real[less_equal]
array_api_tests/test_operators_and_elementwise_functions.py::test_binary_with_scalars_real[greater]
array_api_tests/test_operators_and_elementwise_functions.py::test_binary_with_scalars_real[greater_equal]
array_api_tests/test_operators_and_elementwise_functions.py::test_binary_with_scalars_bool[logical_and]
array_api_tests/test_operators_and_elementwise_functions.py::test_binary_with_scalars_bool[logical_or]
array_api_tests/test_operators_and_elementwise_functions.py::test_binary_with_scalars_bool[logical_xor]