-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathplot-all-in-ncfile.py
executable file
·176 lines (141 loc) · 5.97 KB
/
plot-all-in-ncfile.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
#!/usr/bin/env python
"""
plot_ncfile.py - For each (or given) variables in a netCDF file,
plot each timestamp.
Author: Daniel Rothenberg <[email protected]>
Date: November 28, 2016
"""
import argparse
import os
import pickle
import sys
import warnings
import cartopy.crs as ccrs
import matplotlib.pyplot as plt
plt.ioff() # turn off interactive plotting for expediency
import pandas as pd
import xarray
from xarray.plot.utils import _determine_cmap_params
from plot_util import *
DESCR = """
Plot snapshots from subsets of variables from a given netCDF file.
To help produce consistent plot formats, supports the serialization of
colormap settings. By default, the script will save a "colorfile" with
the same name as the netCDF file being plotted. This "colorfile" is
just a serialized Python dictionary containing a map from each variable
name in the file to a dictionary of the colormap arguments inferred
during the plotting process.
"""
parser = argparse.ArgumentParser("plot-all-in-ncfile.py",
description=DESCR,
formatter_class=argparse.RawTextHelpFormatter)
parser.add_argument("nc_file", help="netCDF file to extract data from")
parser.add_argument("-v", "--variables", nargs="*",
help="Variables to try to plot; if not supplied,\n"
"will plot all 2D variables in file")
parser.add_argument("-c", "--colorfile", type=str,
help="File containing the colormap dictionary")
parser.add_argument("--sample", action='store_true',
help="Only plot the first timestep for each variable.")
if __name__ == "__main__":
args = parser.parse_args()
# Read the given netCDF file
fn_in = args.nc_file
try:
dataset = xray.open_dataset(fn_in, decode_cf=True,
decode_coords=True, mask_and_scale=True)
except RuntimeError:
print("Could not open netCDF file '%s'" % fn_in)
sys.exit(1)
print("Input file details:")
for attr, val in dataset.attrs.items():
print(" " + "%s: %s" % (attr, val))
# As a safety check, coerce dimension names
# ['longitude', ] -> 'lon'
# ['latitude', ] -> 'lat'
if 'longitude' in dataset:
dataset.rename({'longitude': 'lon', },
inplace=True)
if 'latitude' in dataset:
dataset.rename({'latitude': 'lat', },
inplace=True)
# Read colorfile arguments; else, infer the color parameters
if args.colorfile is not None:
colorfile = args.colorfile
try:
with open(colorfile, 'rb') as f:
color_data = pickle.load(f)
except (FileNotFoundError, IOError):
print("Could not open colorfile '%s'" % args.colorfile)
sys.exit(1)
# Warn about variables where color will be freshly inferred
for v in dataset.variables:
if v in dataset.dims: continue
if not (v in color_data):
warnings.warn("Couldn't find color data for %s" % v)
color_data[v] = _determine_cmap_params(dataset[v].data)
else:
print("Inferring new colormaps")
color_data = {}
for v in dataset.variables:
if v in dataset.dims: continue
print(" " + v)
color_data[v] = _determine_cmap_params(dataset[v].data,
levels=21,
robust=True,
extend='both')
# Save/update the new colorfile
print("Saving colormap data")
fn_basename, _ = os.path.splitext(args.nc_file)
with open(fn_basename+".cf", 'wb') as f:
pickle.dump(color_data, f)
#######################################################
print(dataset)
for v in dataset.variables:
if (v in dataset.dims) or (v in dataset.coords): continue
print("\nPlotting data for variable '%s'..." % v)
# print("Loading....", flush=True)
var_data = dataset[v]
print(" Variable details:")
for attr, val in var_data.attrs.items():
print(" " + "%s: %s" % (attr, val))
print(" Colormap settings:")
var_cmap_kwargs = color_data[v]
for key, val in var_cmap_kwargs.items():
print(" " + "%s: %s" % (key, val))
# Iterate over time dimension
for time, plot_data in var_data.groupby('time'):
ts = pd.to_datetime(str(time), utc=True)
# detail format - MM-DD-YYYY_hh:mmZ"
ts_str = ts.strftime('%m-%d-%Y %H:%MZ')
# filename format - "MMDDYYYY_HHMMZ"
fn_ts_str = ts.strftime("%m%d%Y_%H%MZ")
print(" " + ts_str)
# Check if darray needs a cyclic point added
if not check_cyclic(plot_data, coord='lon'):
plot_data = cyclic_dataarray(plot_data, coord='lon')
# Plot this timeslice
fig = plt.figure(ts_str)
ax = fig.add_subplot(111, projection=ccrs.PlateCarree())
ax, plot = geo_plot(plot_data, ax=ax, **var_cmap_kwargs)
# Plot aesthetic tweaking
ax.set_title(ts_str, loc='left')
cb = add_colorbar(plot, ax=ax, orientation='horizontal',
pad=0.1)
# Label the colorbar with the best info available
if hasattr(var_data, 'long_name'):
cb_label = var_data.long_name
else:
cb_label = v
if hasattr(var_data, 'level'):
cb_label += " (%s)" % var_data.level
if hasattr(var_data, 'units'):
cb_label += " [%s]" % var_data.units
cb.set_label(cb_label)
plt.draw()
plot_fmt = 'png'
out_fn = "%s_%s.%s" % (v, fn_ts_str, plot_fmt)
plt.savefig(out_fn, dpi=150, bbox_inches='tight')
plt.close(fig)
if args.sample:
break