-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsupervised_lm.py
240 lines (202 loc) · 9.7 KB
/
supervised_lm.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
import random
import os
import pickle
import copy
import argparse
from open_mtg_env.deck import *
from open_mtg_env.game import *
from open_mtg_env.player import *
from open_mtg_env.phases import Phases
from open_mtg_env.env import MtgEnv
from dataclasses import dataclass, field
from typing import Optional
import torch
from datasets import load_dataset
from peft import LoraConfig, get_peft_model, prepare_model_for_int8_training
from tqdm import tqdm
from transformers import AutoTokenizer, HfArgumentParser, pipeline, Trainer, TrainingArguments, logging, AutoModelForCausalLM,TrainerCallback
#from trl import AutoModelForCausalLM, set_seed
from trl.core import LengthSampler, respond_to_batch
from lm_utils import run_games
def print_trainable_parameters(model):
"""
Prints the number of trainable parameters in the model.
"""
trainable_params = 0
all_param = 0
for _, param in model.named_parameters():
all_param += param.numel()
if param.requires_grad:
trainable_params += param.numel()
print(
f"trainable params: {trainable_params} || all params: {all_param} || trainable%: {100 * trainable_params / all_param}"
)
class MtgDataset(torch.utils.data.Dataset):
def __init__(self, encodings, labels):
self.encodings = encodings
self.labels = labels
def __getitem__(self, idx):
item = {key: torch.tensor(val[idx]) for key, val in self.encodings.items()}
item['labels'] = torch.tensor(self.labels[idx])
#item['labels'] = item['input_ids'].clone()
return item
def __len__(self):
return len(self.encodings)
def main(args):
model = AutoModelForCausalLM.from_pretrained(
args.model_name,
#trust_remote_code=True,
#use_cache=not args.no_gradient_checkpointing,
load_in_8bit=True,
device_map='auto',
#device_map={"": Accelerator().process_index},
)
# model = prepare_model_for_int8_training(model)
tokenizer = AutoTokenizer.from_pretrained(args.model_name)
tokenizer.pad_token = tokenizer.eos_token
lora_config = LoraConfig(
r=16,
lora_alpha=32,
lora_dropout=0.05,
bias="none",
task_type="CAUSAL_LM",
)
model = get_peft_model(model, lora_config)
print_trainable_parameters(model)
# prepare custom dataset
data_name = 'data_mcts_2_g250_d10_74432' + '.pkl'
with open(os.path.join('data', data_name),'rb') as f:
data = pickle.load(f)
env = MtgEnv(get_8ed_core_gold_deck, 'Gold0', get_8ed_core_gold_deck, 'Gold1') # TODO
input_strs = []
# iterate over trajectories
max_traj_len = -1
input_lens = []
n_trajectories = 0
for i in range(len(data['states'])):
# check if winning trajectory
if data['rewards'][i][0] != 1:
continue
else:
n_trajectories += 1
traj_len = len(data['states'][i])
if traj_len > max_traj_len:
max_traj_len = traj_len
for j in range(traj_len):
state = data['states'][i][j]
possible_moves = data['legal_actions'][i][j]
action = data['actions'][i][j]
query = env.state_action_to_query(state, possible_moves)
response = env.format_action(action)
input_str = query + response
input_len = len(input_str)
input_lens.append(input_len)
input_strs.append(input_str)
# create dataset
print(f'Creating dataset with {n_trajectories}, max trajectory len {max_traj_len}, max input len {max(input_lens)}, mean input len: {np.mean(input_lens)}')
input_encodings = tokenizer(input_strs, padding=True, return_offsets_mapping=True) #truncation=True, maybe adjust
labels = []
for i in range(len(input_encodings['input_ids'])):
offset_map = input_encodings['offset_mapping'][i]
first_index, last_index = zip(*offset_map)
last_index = np.array(last_index)
target_str = "best:" # make sure this is the same as in env
# TODO
# get start of response
#response_index = input_strs[i].index(target_str)
start_of_output = input_strs[0].index(target_str) + len(target_str)
np_ids = input_encodings['input_ids'][i]
label = np.where(last_index < start_of_output,-100,np_ids)
labels.append(label)
train_dataset = MtgDataset(input_encodings, labels)
#import pdb; pdb.set_trace()
training_args = TrainingArguments(
output_dir=args.output_dir,
max_steps=args.max_steps,
logging_steps=args.log_freq,
per_device_train_batch_size=args.batch_size,
per_device_eval_batch_size=args.batch_size,
learning_rate=args.learning_rate,
lr_scheduler_type=args.lr_scheduler_type,
warmup_steps=args.num_warmup_steps,
gradient_accumulation_steps=args.gradient_accumulation_steps,
weight_decay=args.weight_decay,
#run_name="gpt-test",
#report_to="wandb",
report_to= "none",
ddp_find_unused_parameters=False,
)
# create trainer
trainer = Trainer(model=model, args=training_args, train_dataset=train_dataset)
# add custom eval callback for running games every eval_freq steps
eval_freq = 2 #1
games_per_eval = 10
# eval_freq = 1
# games_per_eval = 1
class EvaluateGameCallback(TrainerCallback):
def __init__(self, model, tokenizer, env, args, eval_freq=10, games_per_eval=5):
self.env = env
self.args = args
self.eval_freq = eval_freq
self.games_per_eval = games_per_eval
self.model = model
self.tokenizer = tokenizer
def on_step_end(self, args, state, control, **kwargs):
if state.global_step % self.eval_freq == 0:
queries, actions, rewards, player_0_wins, player_1_wins = run_games(env, self.model, self.tokenizer, args.device, n_games=self.games_per_eval, mode_0='lm', mode_1='mcts', lm_sample=False, print_state=False, depth=self.args.depth)
print(f"LM vs MCTS depth {self.args.depth}")
print("Player 0 wins: ", player_0_wins)
print("Player 1 wins: ", player_1_wins)
#trainer.add_callback(EvaluateGameCallback(model, tokenizer, env, args, eval_freq=eval_freq, games_per_eval=games_per_eval))
trainer.train()
import pdb; pdb.set_trace()
# eval model
queries, actions, rewards, player_0_wins, player_1_wins = run_games(env, model, tokenizer, args.device, n_games=args.eval_games, mode_0='lm', mode_1='mcts', lm_sample=False, print_state=False, depth=args.depth)
print(f"LM vs MCTS depth {args.depth}")
print("Player 0 wins: ", player_0_wins)
print("Player 1 wins: ", player_1_wins)
queries, actions, rewards, player_0_wins, player_1_wins = run_games(env, model, tokenizer, args.device, n_games=args.eval_games, mode_0='lm', mode_1='random', lm_sample=False, print_state=False, depth=args.depth)
print("LM vs Random")
print("Player 0 wins: ", player_0_wins)
print("Player 1 wins: ", player_1_wins)
if __name__ == '__main__':
# @dataclass
# class ScriptArguments:
# """
# The name of the Casual LM model we wish to fine with PPO
# """
# # NOTE: gpt2 models use Conv1D instead of Linear layers which are not yet supported in 8 bit mode
# # models like gpt-neo* models are more suitable.
# #model_name: Optional[str] = field(default="edbeeching/gpt-neo-125M-imdb", metadata={"help": "the model name"})
# model_name: Optional[str] = field(default="EleutherAI/gpt-neo-125M", metadata={"help": "the model name"})
# #model_name: Optional[str] = field(default="EleutherAI/gpt-neo-1.3B", metadata={"help": "the model name"})
# log_with: Optional[str] = field(default=None, metadata={"help": "use 'wandb' to log with wandb"})
# learning_rate: Optional[float] = field(default=1.41e-5, metadata={"help": "the learning rate"})
# mini_batch_size: Optional[int] = field(default=4, metadata={"help": "the PPO minibatch size"})
# batch_size: Optional[int] = field(default=64, metadata={"help": "the batch size"}) # 256
# gradient_accumulation_steps: Optional[int] = field(
# default=1, metadata={"help": "the number of gradient accumulation steps"}
# )
# parser = HfArgumentParser(ScriptArguments)
# script_args = parser.parse_args_into_dataclasses()[0]
# instead use argparse
parser = argparse.ArgumentParser()
#parser.add_argument('--model_name', type=str, default='EleutherAI/gpt-neo-125M')
parser.add_argument('--device', type=str, default='cuda:0'),
parser.add_argument('--model_name', type=str, default='EleutherAI/Pythia-410m') #1b, 410m worked..Pythia-410m
#parser.add_argument("--batch_size", type=int, default=16)
parser.add_argument("--batch_size", type=int, default=32)
parser.add_argument("--gradient_accumulation_steps", type=int, default=1)
parser.add_argument("--learning_rate", type=float, default=1e-4)
parser.add_argument("--lr_scheduler_type", type=str, default="cosine")
parser.add_argument("--max_steps", type=int, default=1000)
parser.add_argument("--num_warmup_steps", type=int, default=100)
parser.add_argument("--weight_decay", type=float, default=0.05)
parser.add_argument("--log_freq", default=1, type=int)
parser.add_argument("--output_dir", default="./checkpoints", type=str)
parser.add_argument("--eval_games", default='5', type=int)
parser.add_argument('--depth', type=int, default=5)
args = parser.parse_args()
# TODO mask idea, use this, return_offsets_mapping=True
# https://stackoverflow.com/questions/63413414/is-there-a-way-to-get-the-location-of-the-substring-from-which-a-certain-token-h
main(args)