-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy path3d_sudoku_dash_v3.py
647 lines (564 loc) · 20.8 KB
/
3d_sudoku_dash_v3.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
import dash
import dash_core_components as dcc
import dash_html_components as html
import dash_daq as daq
import dash_auth
from dash.dependencies import Input, Output, State
import pandas as pd
import numpy as np
import json
import base64
import plotly.graph_objs as go
import random
from random import randint
import pulp as plp
from pulp import *
####----------------3D SUDOKU MODEL--------------#####
m_n = randint(0, 2000)
## Basic Model
model = plp.LpProblem(name="MIP Model")
set_N = [1, 2, 3, 4]
set_I = [1, 2, 3, 4]
set_J = [1, 2, 3, 4]
set_K = [1, 2, 3, 4]
first = [1, 2]
second = [3, 4]
# X is Binary
x_vars = plp.LpVariable.dicts('X',
[(n, i, j, k) for n in set_N
for i in set_I
for j in set_J
for k in set_K],
0, 1, plp.LpBinary)
model += m_n, "Arbitrary Objective Function"
# i
for n in set_N:
for j in set_J:
for k in set_K:
model += plp.lpSum(x_vars[(n, i, j, k)] for i in set_I) == 1
# j
for n in set_N:
for i in set_I:
for k in set_K:
model += plp.lpSum(x_vars[(n, i, j, k)] for j in set_J) == 1
# k
for n in set_N:
for i in set_I:
for j in set_J:
model += plp.lpSum(x_vars[(n, i, j, k)] for k in set_K) == 1
# n
for k in set_K:
for i in set_I:
for j in set_J:
model += plp.lpSum(x_vars[(n, i, j, k)] for n in set_N) == 1
# i=1,2- j=1,2
for k in set_K:
for n in set_N:
model += plp.lpSum(x_vars[(n, i, j, k)] for i in first for j in first) == 1
# i=1,2- j=3,4
for k in set_K:
for n in set_N:
model += plp.lpSum(x_vars[(n, i, j, k)] for i in first for j in second) == 1
# i=3,4- j=1,2
for k in set_K:
for n in set_N:
model += plp.lpSum(x_vars[(n, i, j, k)] for i in second for j in first) == 1
# i=3,4- j=3,4
for k in set_K:
for n in set_N:
model += plp.lpSum(x_vars[(n, i, j, k)] for i in second for j in second) == 1
# i=1,2- k=1,2
for j in set_J:
for n in set_N:
model += plp.lpSum(x_vars[(n, i, j, k)] for i in first for k in first) == 1
# i=1,2- k=3,4
for j in set_J:
for n in set_N:
model += plp.lpSum(x_vars[(n, i, j, k)] for i in first for k in second) == 1
# i=3,4- k=1,2
for j in set_J:
for n in set_N:
model += plp.lpSum(x_vars[(n, i, j, k)] for i in second for k in first) == 1
# i=3,4- k=3,4
for j in set_J:
for n in set_N:
model += plp.lpSum(x_vars[(n, i, j, k)] for i in second for k in second) == 1
# j=1,2- k=1,2
for i in set_I:
for n in set_N:
model += plp.lpSum(x_vars[(n, i, j, k)] for j in first for k in first) == 1
# j=1,2- k=3,4
for i in set_I:
for n in set_N:
model += plp.lpSum(x_vars[(n, i, j, k)] for j in first for k in second) == 1
# j=3,4- k=1,2
for i in set_I:
for n in set_N:
model += plp.lpSum(x_vars[(n, i, j, k)] for j in second for k in first) == 1
# j=3,4- k=3,4
for i in set_I:
for n in set_N:
model += plp.lpSum(x_vars[(n, i, j, k)] for j in second for k in second) == 1
## Solve basic model
model.solve()
opt_df = pd.DataFrame.from_dict(x_vars, orient="index",
columns=["variable_object"])
opt_df.index = pd.MultiIndex.from_tuples(opt_df.index, names=["column_n", "column_i", "column_j", "column_k"])
opt_df.reset_index(inplace=True)
# PuLP
opt_df["solution_value"] = opt_df["variable_object"].apply(lambda item: item.varValue)
opt_df.drop(columns=["variable_object"], inplace=True)
opt_df.to_csv("./optimization_solution.csv")
## Uniqueness
prime = plp.LpProblem("uniqueness", LpMinimize)
# Decision variables
set_N = [1, 2, 3, 4]
set_I = [1, 2, 3, 4]
set_J = [1, 2, 3, 4]
set_K = [1, 2, 3, 4]
first = [1, 2]
second = [3, 4]
# X is Binary
xp_vars = plp.LpVariable.dicts('Xp',
[(n, i, j, k) for n in set_N
for i in set_I
for j in set_J
for k in set_K],
0, 1, plp.LpBinary)
##Solution array
df_sol = opt_df[opt_df['solution_value'] == 1.0]
##Constraints
# i
for n in set_N:
for j in set_J:
for k in set_K:
prime += plp.lpSum(xp_vars[(n, i, j, k)] for i in set_I) == 1
# j
for n in set_N:
for i in set_I:
for k in set_K:
prime += plp.lpSum(xp_vars[(n, i, j, k)] for j in set_J) == 1
# k
for n in set_N:
for i in set_I:
for j in set_J:
prime += plp.lpSum(xp_vars[(n, i, j, k)] for k in set_K) == 1
# n
for k in set_K:
for i in set_I:
for j in set_J:
prime += plp.lpSum(xp_vars[(n, i, j, k)] for n in set_N) == 1
# i=1,2- j=1,2
for k in set_K:
for n in set_N:
prime += plp.lpSum(xp_vars[(n, i, j, k)] for i in first for j in first) == 1
# i=1,2- j=3,4
for k in set_K:
for n in set_N:
prime += plp.lpSum(xp_vars[(n, i, j, k)] for i in first for j in second) == 1
# i=3,4- j=1,2
for k in set_K:
for n in set_N:
prime += plp.lpSum(xp_vars[(n, i, j, k)] for i in second for j in first) == 1
# i=3,4- j=3,4
for k in set_K:
for n in set_N:
prime += plp.lpSum(xp_vars[(n, i, j, k)] for i in second for j in second) == 1
# i=1,2- k=1,2
for j in set_J:
for n in set_N:
prime += plp.lpSum(xp_vars[(n, i, j, k)] for i in first for k in first) == 1
# i=1,2- k=3,4
for j in set_J:
for n in set_N:
prime += plp.lpSum(xp_vars[(n, i, j, k)] for i in first for k in second) == 1
# i=3,4- k=1,2
for j in set_J:
for n in set_N:
prime += plp.lpSum(xp_vars[(n, i, j, k)] for i in second for k in first) == 1
# i=3,4- k=3,4
for j in set_J:
for n in set_N:
prime += plp.lpSum(xp_vars[(n, i, j, k)] for i in second for k in second) == 1
# j=1,2- k=1,2
for i in set_I:
for n in set_N:
prime += plp.lpSum(xp_vars[(n, i, j, k)] for j in first for k in first) == 1
# j=1,2- k=3,4
for i in set_I:
for n in set_N:
prime += plp.lpSum(xp_vars[(n, i, j, k)] for j in first for k in second) == 1
# j=3,4- k=1,2
for i in set_I:
for n in set_N:
prime += plp.lpSum(xp_vars[(n, i, j, k)] for j in second for k in first) == 1
# j=3,4- k=3,4
for i in set_I:
for n in set_N:
prime += plp.lpSum(xp_vars[(n, i, j, k)] for j in second for k in second) == 1
indices = list(df_sol.index)
random.shuffle(indices)
def give_color(c):
if c == 0:
return 'grey'
elif c == 1:
return 'blue'
elif c == 2:
return 'green'
elif c == 3:
return 'red'
else:
return 'yellow'
def check_game(df_solved):
diff = abs(df_solved['solution_value'] - opt_df['solution_value'])
if diff.sum() > 0:
return "You Lose!!"
else:
return "You Win!!"
def random_x(df, i):
list_var = [df['column_n'][indices[i]], df['column_i'][indices[i]], df['column_j'][indices[i]],
df['column_k'][indices[i]]]
df = df.drop(indices[i])
return df, list_var
def remove_clues(q, prime1, df1, indices):
for i in range(q):
get = random_x(df1, i)
df1 = get[0]
indices.append(get[1])
for idx, row in df1.iterrows():
prime1 += xp_vars[(row['column_n'], row['column_i'], row['column_j'], row['column_k'])] == 1
return df1
def give_puzzle(u, level, df_):
list_indices_rem = []
prime__ = prime.copy()
if level == 4:
q = u - 4
elif level == 3:
q = u - 8 # ,u-11)
elif level == 2:
q = u - 18
else:
q = u - 30
df_f = remove_clues(q, prime__, df_, list_indices_rem)
puzzle = [0 for i in range(64)]
for i in range(len(df_f)):
puzzle[list(df_f.index)[i] % 64] = list(df_f['column_n'])[i]
return puzzle
def find_uniqueness(df_):
df_u = df_.copy()
for i in range(63):
df = df_u
list_indices_rem = []
prime_ = prime.copy()
remove_clues(i, prime_, df, list_indices_rem)
prime_ += plp.lpSum(xp_vars[(row[0], row[1], row[2], row[3])] for row in list_indices_rem)
prime_.solve()
prime_df = pd.DataFrame.from_dict(xp_vars, orient="index",
columns=["variable_object"])
prime_df.index = pd.MultiIndex.from_tuples(prime_df.index,
names=["column_n", "column_i", "column_j", "column_k"])
prime_df.reset_index(inplace=True)
prime_df["solution_value"] = prime_df["variable_object"].apply(lambda item: item.varValue)
prime_df.drop(columns=["variable_object"], inplace=True)
prime_df.to_csv("./optimization_solution.csv")
diff = abs(prime_df['solution_value'] - opt_df['solution_value'])
if diff.sum() > 0:
return i
break
else:
continue
def create_df_sol(p):
# print(p)
sol = [0 for i in range(256)]
for idx in range(64):
sol[(64 * (p[idx] - 1)) + idx] = 1.0
df_s = opt_df.copy()
df_s['solution_value'] = sol
return df_s
uniq = find_uniqueness(df_sol)
# For security reasons, this code does not contain the password pairs. Feel free to add your own
VALID_USERNAME_PASSWORD_PAIRS = []
external_stylesheets = ['https://codepen.io/chriddyp/pen/bWLwgP.css']
## Logo loading
image_filename = '3d_sudoku_logo_3.png'
encoded_logo = base64.b64encode(open(image_filename, 'rb').read())
logo = html.Img(src='data:image/png;base64,{}'.format(encoded_logo.decode()), style={'width': '30vh'})
### Dashboard
app = dash.Dash(__name__, external_stylesheets=external_stylesheets)
auth = dash_auth.BasicAuth(
app,
VALID_USERNAME_PASSWORD_PAIRS
)
########-------- PUT EVERYTHING HERE FOR THE MAIN BUTTONS --------########
## Level options
level_options = [{'label': 'Easy', 'value': 1, 'disabled': False},
{'label': 'Medium', 'value': 2, 'disabled': False},
{'label': 'Difficult', 'value': 3, 'disabled': False},
{'label': 'Expert', 'value': 4, 'disabled': False}]
sel_radio = dcc.RadioItems(id='level-picker', options=level_options, value=1, style={'width': '90%'},
labelStyle={'display': 'inline-block'})
# Color options
col_options = [{'label': 'Blue', 'value': 1},
{'label': 'Green', 'value': 2},
{'label': 'Red', 'value': 3},
{'label': 'Yellow', 'value': 4}]
sel_color = dcc.Dropdown(id='color-picker', options=col_options, value=1, style={'width': '90%'})
# Play-Reset buttons
play_btn = html.Button('Play', id='play_btn', style={'display': 'block'}, n_clicks_timestamp=0)
reset_btn = html.Button('Reset', id='reset_btn', style={'display': 'none'}, n_clicks_timestamp=0)
submit_btn = html.Button('Submit', id='submit_btn', style={'display': 'none'}, n_clicks_timestamp=0)
########-------- PUT EVERYTHING HERE FOR GAME TAB --------########
sudoku_plot = dcc.Graph(id='sudoku_plot')
stopwatch = daq.LEDDisplay(id='my-LED-display', label="Timer", value=0)
content_main_tab = html.Div(children=[
html.Div(sudoku_plot, id='sud-plot',
style={'vertical-align': 'center', 'horizontal-align': 'center', 'width': '100vh'}),
html.Div(id='hidden-div', style={'display': 'none'}),
html.Div(id='hidden-div-initial-puzzle', style={'display': 'none'}),
html.Div([
html.Div(stopwatch, style={'float': 'left', 'width': '50vh'}),
html.Div([
html.Div([
html.H1(id='result', children='')
]),
], className="modal-container", id="result-container",
style={'float': 'right', 'horizontal-align': 'center', 'width': '50vh', 'display': 'none'}),
], style={'width': '90%', 'display': 'inline-block'}),
html.Div([dcc.Interval(id='interval1', interval=1000, n_intervals=0), html.H1(id='label1', children='')])
],
style={'width': '90%', 'height': '100%'})
########-------- MAKING APP LAYOUT --------########
app.layout = html.Div([
html.Div([
html.Div(children=logo, style={'height': '100', 'display': 'inline-block', 'vertical-align': 'center'}),
html.Label(id='overall-title', children='Select difficulty level: '),
html.P(),
html.Div(id='level-radio-items', children=[sel_radio]),
html.P(),
html.P(),
html.P(),
html.Div(id='color-dropdown', children=[sel_color]),
html.P(),
html.P(),
html.P(),
html.Div(id='play-reset-buttons', children=[play_btn, reset_btn, submit_btn],
style={'display': 'inline-block'}),
],
style={'float': 'left', 'width': '31vh', 'margin': {'r': 20, 't': 0, 'b': 0, 'l': 0},
'borderRight': 'thin lightgrey solid', 'padding': '10px 5px', 'height': '100vh'}),
html.Div([
dcc.Tabs(id="tab_game", children=[
dcc.Tab(id='tab_sudoku', label='3D-Sudoku', value='3D-Sudoku', children=[
content_main_tab
], style={'float': 'right', 'width': '100vh', 'height': '100vh'}),
], style={'float': 'right', 'width': '85vh'})
]),
html.Div(id='intermediate-value', style={'display': 'none'}),
])
########-------- CALLBACKS MAIN BUTTONS --------########
### Play button
@app.callback(
Output('play_btn', 'style'),
[Input('play_btn', 'n_clicks_timestamp'),
Input('reset_btn', 'n_clicks_timestamp')]
)
def dis_en_play_btn(click_p, click_r):
if int(click_p) > int(click_r):
# print('Play was most recently clicked')
return {'display': 'none'}
else:
print('checking buttons appearance: Play clicking')
if int(click_p) == 0 and int(click_r) == 0:
return {'display': 'block'}
### Submit button
@app.callback(
Output('submit_btn', 'style'),
[Input('play_btn', 'n_clicks_timestamp'),
Input('reset_btn', 'n_clicks_timestamp'),
Input('submit_btn', 'n_clicks_timestamp')]
)
def dis_en_submit_btn(click_p, click_r, click_s):
if int(click_p) > int(click_r) and int(click_p) > int(click_s):
# print('Play was most recently clicked')
return {'display': 'block'}
elif int(click_r) > int(click_p) and int(click_r) > int(click_s):
# print('Reset was most recently clicked')
return {'display': 'none'}
elif int(click_s) > int(click_p) and int(click_s) > int(click_r):
# print('Submit was most recently clicked')
return {'display': 'none'}
else:
print('checking buttons appearance: Submit clicking')
if int(click_p) == 0 and int(click_r) == 0 and int(click_s) == 0:
return {'display': 'none'}
### Reset button
@app.callback(
Output('reset_btn', 'style'),
[Input('submit_btn', 'n_clicks_timestamp'),
Input('reset_btn', 'n_clicks_timestamp')]
)
def dis_en_reset_btn(click_s, click_r):
if int(click_s) > int(click_r):
# print('Submit was most recently clicked')
return {'display': 'block'}
elif int(click_r) > int(click_s):
# print('Reset was most recently clicked')
return {'display': 'none'}
else:
print('checking buttons appearance: Reset clicking')
if int(click_s) == 0 and int(click_r) == 0:
return {'display': 'none'}
### Radio buttons for levels
@app.callback(
Output('level-radio-items', 'style'),
[Input('play_btn', 'n_clicks_timestamp'),
Input('reset_btn', 'n_clicks_timestamp')]
)
def disable_enable_radio_items(click_p, click_r):
if int(click_p) > int(click_r):
# print('Play was most recently clicked')
return {'display': 'none'}
elif int(click_r) > int(click_p):
# print('Reset was most recently clicked')
return {'display': 'block'}
else:
print('checking buttons appearance: Radio btns')
@app.callback(
Output('hidden-div-initial-puzzle', 'children'),
[Input('level-picker', 'value'), Input('play_btn', 'n_clicks')]
)
def create_sudoku(lvl, play_clicks):
df_p = df_sol.copy()
if lvl is None:
lvl = 1
if play_clicks is not None:
puzzle1 = give_puzzle(uniq, lvl, df_p)
print('the original puzzle: ', puzzle1)
return puzzle1
else:
return None
@app.callback(
Output('hidden-div', 'children'),
[Input('sudoku_plot', 'clickData'), Input('color-picker', 'value')],
[State('hidden-div', 'children')])
def get_selected_data(clickData, clr, previous):
if clickData is not None:
result = clickData['points']
result[-1]['new_value'] = clr
if previous:
previous_list = json.loads(previous)
if previous_list is not None:
result = previous_list + result
return json.dumps(result)
@app.callback(
Output('sudoku_plot', 'figure'),
[Input('hidden-div-initial-puzzle', 'children'), Input('hidden-div', 'children')]
)
def create_update_sudoku(original_puzzle, data):
if original_puzzle:
if data:
data_points = json.loads(data)
for p in data_points:
if p['marker.color'] == 'grey':
pxy = p["pointNumber"]
original_puzzle[pxy] = p['new_value']
else:
print('you cannot change the color of this ball')
# last_x = data_points[-1]['x']
# last_y = data_points[-1]['y']
# last_z = data_points[-1]['z']
list_colors = [give_color(c) for c in original_puzzle]
x = [0 for i in range(16)] + [1 for i in range(16)] + [2 for i in range(16)] + [3 for i in range(16)]
y = [0 for i in range(4)] + [1 for i in range(4)] + [2 for i in range(4)] + [3 for i in range(4)]
y = y * 4
z = [i for i in range(4)] * 16
trace1 = go.Scatter3d(
x=x,
y=y,
z=z,
mode='markers',
marker=dict(
size=20,
color=list_colors,
opacity=0.8
))
layout = go.Layout(
margin=dict(l=5, r=5, b=5, t=5),
scene=dict(xaxis=dict(ticks='', showticklabels=False),
yaxis=dict(ticks='', showticklabels=False),
zaxis=dict(ticks='', showticklabels=False),
),
width=620,
height=620
)
return {'data': [trace1],
'layout': layout}
@app.callback(
Output('interval1', 'interval'),
[Input('submit_btn', 'n_clicks')])
def update_interval_submit(click_s):
if click_s:
sub_time = 60 * 60 * 1000
else:
sub_time = 1000
return sub_time
@app.callback(Output('my-LED-display', 'value'),
[Input('play_btn', 'n_clicks_timestamp'), Input('interval1', 'n_intervals'),
Input('reset_btn', 'n_clicks_timestamp'), Input('submit_btn', 'n_clicks_timestamp')])
def update_interval(click_p, n, click_r, click_s):
if int(click_p) > int(click_r) and int(click_p) > int(click_s):
# print('Play was most recently clicked')
return str(n)
elif int(click_r) > int(click_p) and int(click_r) > int(click_s):
# print('Reset was most recently clicked')
return str(0)
elif int(click_s) > int(click_p) and int(click_s) > int(click_r):
# print('Submit was most recently clicked')
return str(n)
else:
print('None of the buttons have been clicked yet')
@app.callback(
Output('intermediate-value', 'children'),
[Input('level-picker', 'value'), Input('play_btn', 'n_clicks'), Input('hidden-div', 'children')])
def get_list_colors(lvl, play_clicks, data):
df_p = df_sol.copy()
if lvl == None:
lvl = 1
if play_clicks:
puzzle1 = give_puzzle(uniq, lvl, df_p)
if data:
data_points = json.loads(data)
for p in data_points:
if p['marker.color'] == 'grey':
pxy = p["pointNumber"]
puzzle1[pxy] = p['new_value']
else:
print('you cannot change the color of this ball')
return puzzle1
##submit reset btns
@app.callback(Output('result', 'children'),
[Input('submit_btn', 'n_clicks_timestamp'), Input('reset_btn', 'n_clicks_timestamp'),
Input('intermediate-value', 'children')])
def give_result(click_s, click_r, list_string_colors):
if int(click_s) > int(click_r):
df_solved = create_df_sol(list_string_colors)
return check_game(df_solved)
if int(click_r) > int(click_s):
return 'Press F5 to start a new game'
@app.callback(Output('result-container', 'style'),
[Input('submit_btn', 'n_clicks'), Input('reset_btn', 'n_clicks')])
def modal_display_status(click_s, click_r):
if click_s is not None or click_r is not None:
return {'display': 'inline'}
else:
return {'display': 'none'}
### Stop game
@app.callback(
Output('sud-plot', 'style'),
[Input('reset_btn', 'n_clicks')])
def reset_puzzle(click_r):
if click_r:
return {'display': 'none'}
########-------- RUNNING MAIN SCRIPT --------########
if __name__ == '__main__':
app.run_server(debug=True)