-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathStylometry.py
83 lines (67 loc) · 2.91 KB
/
Stylometry.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
import numpy as np
import matplotlib.pyplot as plt
from sklearn.decomposition import PCA
from sklearn.cluster import KMeans
from sklearn.metrics import silhouette_score
import os
class Stylometry:
def __init__(self):
self.pca = None
self.kmeans = None
self.n_components = None
self.n_clusters = None
self.train_data = None
self.test_data = None
self.reduced_train_data = None
self.reduced_test_data = None
self.train_labels = None
self.test_labels = None
def _choose_n_components(self, data, variance_threshold=0.95):
pca = PCA()
pca.fit(data)
cumulative_variance = np.cumsum(pca.explained_variance_ratio_)
n_components = np.where(cumulative_variance >= variance_threshold)[0][0] + 1
return n_components
def _choose_n_clusters(self, data, k_range=range(2, 10)):
scores = []
ssd = []
for k in k_range:
kmeans = KMeans(n_clusters=k, random_state=42)
labels = kmeans.fit_predict(data)
score = silhouette_score(data, labels)
scores.append(score)
ssd.append(kmeans.inertia_)
self._plot_elbow_method(ssd, k_range)
optimal_k = k_range[np.argmax(scores)]
return optimal_k
def _plot_elbow_method(self, ssd, k_range):
plt.figure(figsize=(8, 4))
plt.plot(k_range, ssd, 'bx-')
plt.xlabel('k (number of clusters)')
plt.ylabel('Sum of squared distances')
plt.title('Elbow Method For Optimal k')
plots_directory = r"Visualizations\Plots of clustering"
if not os.path.exists(plots_directory):
os.makedirs(plots_directory)
file_path = os.path.join(plots_directory, f'Elbow Method for Optimal k.png')
plt.savefig(file_path)
plt.show()
def fit(self, train_data):
self.train_data = train_data
self.n_components = self._choose_n_components(train_data)
self.pca = PCA(n_components=self.n_components)
self.reduced_train_data = self.pca.fit_transform(train_data)
self.n_clusters = self._choose_n_clusters(self.reduced_train_data)
self.kmeans = KMeans(n_clusters=self.n_clusters)
self.train_labels = self.kmeans.fit_predict(self.reduced_train_data)
def predict(self, test_data):
if self.pca is None or self.kmeans is None:
raise ValueError("Must fit on train data before predicting.")
self.test_data = test_data
self.reduced_test_data = self.pca.transform(test_data)
self.test_labels = self.kmeans.predict(self.reduced_test_data)
return self.test_labels
def get_reduced_date(self):
return self.reduced_train_data, self.reduced_test_data
def get_labels(self):
return self.train_labels, self.test_labels