-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcode05_update.py
588 lines (444 loc) · 26.4 KB
/
code05_update.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
"""
BayesFRET: File 6
===
An Experiment-Adjusted HDP-HMM to Analyze Surface-Immobilized smFRET Data
About
---
`code05_update.py`: The file to handle each MCMC iteration.
Function Hierarchy
---
* `sampler_update()`
* `UPDATE_STATES()`
* `UPDATE_PHOTOPHYSICS()`
* `UPDATE_TRANSITION_PROBS()`
* `UPDATE_EMISSIONS()`
* `HMC()`
* `get_u_grad()`
* `get_u()`
* `MG()`
* `FLIPPER()`
* `UPDATE_AUX()` is part of the `Sample` class in `code01_classes.py` since all parameters are already there.
Author
---
Code by Jared Hidalgo.
Inspired by MATLAB code from Ioannis Sgouralis, Shreya Madaan, Franky Djutanta, Rachael Kha, Rizal F. Hariadi, and Steve Pressé for "A Bayesian Nonparametric Approach to Single Molecule Förster Resonance Energy Transfer".
"""
# Import internal packages for use.
from copy import deepcopy
# Import external packages for use.
import numpy as np
from numpy.matlib import repmat
# Import program files for documentation.
from code01_classes import Universal, Sample, Params
def sampler_update(sample: Sample, params: Params, U: Universal, v: np.int64):
"""
The parent function to update the sample data.
Function Hierarchy
---
* `UPDATE_STATES()`
* `UPDATE_PHOTOPHYSICS()`
* `UPDATE_TRANSITION_PROBS()`
* `UPDATE_EMISSIONS()`
* `HMC()`
* `get_u_grad()`
* `get_u()`
* `MG()`
* `FLIPPER()`
* `UPDATE_AUX()` is part of the `Sample` class in `code01_classes.py` since all parameters are already there.
"""
sample.n += 1
UPDATE_STATES( sample, params, U, v )
UPDATE_PHOTOPHYSICS( sample, params, U, v )
UPDATE_TRANSITION_PROBS( sample, params, U, v )
UPDATE_EMISSIONS( sample, params, U, v )
sample.UPDATE_AUX()
def UPDATE_STATES(sample: Sample, params: Params, U: Universal, v: np.int64):
"""
Update #1
===
Updates photo-states of each dye (`ft_D`, `ft_A`) and calculated conformational states (`st`) throughout the experiment.
Args:
v (int): Index of the current simulation.
"""
# FORM TRANSITION PROBS FOR DYES ONLY
p = np.empty((4,4))
p[np.ix_([0, 2], [0, 2])] = 1 - sample.wi_D[0] # D: 0 -> 0
p[np.ix_([0, 2], [1, 3])] = sample.wi_D[0] # D: 0 -> 1
p[np.ix_([1, 3], [0, 2])] = 1 - sample.wi_D[1] # D: 1 -> 0
p[np.ix_([1, 3], [1, 3])] = sample.wi_D[1] # D: 1 -> 1
p[np.ix_([0, 1], [0, 1])] = p[np.ix_([0, 1], [0, 1])] * (1 - sample.wi_A[0]) # A: 0 -> 0
p[np.ix_([0, 1], [2, 3])] = p[np.ix_([0, 1], [2, 3])] * sample.wi_A[0] # A: 0 -> 1
p[np.ix_([2, 3], [0, 1])] = p[np.ix_([2, 3], [0, 1])] * (1 - sample.wi_A[1]) # A: 1 -> 0
p[np.ix_([2, 3], [2, 3])] = p[np.ix_([2, 3], [2, 3])] * sample.wi_A[1] # A: 1 -> 1
o = np.empty(4)
o[[0, 2]] = 1 - sample.wi_D[2] # D: * -> 0
o[[1, 3]] = sample.wi_D[2] # D: * -> 1
o[[0, 1]] = o[[0, 1]] * (1 - sample.wi_A[2]) # A: * -> 0
o[[2, 3]] = o[[2, 3]] * sample.wi_A[2] # A: * -> 1
# FORM TRANSITION PROBS IN COMBINED STATE-SPACE
P = np.empty((4*params.K_lim, 4*params.K_lim))
O = np.empty( 4*params.K_lim )
for k in range(params.K_lim):
for m in range(params.K_lim):
P[ (4*m):(4*m+4) , (4*k):(4*k+4) ] = p * sample.pm[m,k]
O[ (4*k):(4*k+4) ] = o * sample.ps[k]
# COMPUTE LIKELIHOOD IN COMBINED STATE-SPACE
A_forw = np.empty( (4*params.K_lim, params.T) )
f_D = np.array( [[0],[1],[0],[1]] )
f_A = np.array( [[0],[0],[1],[1]] )
for k in range(params.K_lim):
tmp1 = f_D * (f_A * sample.lam_D[k] + ( 1-f_A ) * sample.lam_Z)
tmp2 = f_D * f_A * sample.lam_A[k]
mu_D = params.dD * params.qD * ( sample.ksi_D + params.cDD * tmp1 + params.cAD * tmp2 )
mu_A = params.dD * params.qA * ( sample.ksi_A + params.cDA * tmp1 + params.cAA * tmp2 )
A_forw[ (4*k):(4*k+4) ] = ( params.It_D * np.log(mu_D) + params.It_A * np.log(mu_A) ) - ( mu_D + mu_A )
A_forw = np.maximum( np.exp( A_forw - A_forw.max(0) ), np.finfo(float).tiny )
# FILTER FORWARD IN COMBINED STATE-SPACE
tmp = A_forw[:,0] * O
A_forw[:,0] = tmp / np.sum( tmp )
for t in range(1, params.T):
tmp = A_forw[:,t] * ( np.transpose(P) @ A_forw[:,t-1] )
A_forw[:,t] = tmp / np.sum( tmp )
# SAMPLE BACKWARD IN COMBINED STATE-SPACE
ct = np.empty( params.T, dtype = np.int64 )
ct[-1] = U.get_samples( A_forw[:, -1], v )
for t in range(params.T-2, -1, -1):
ct[t] = U.get_samples( A_forw[:, t] * P[:, ct[t+1]], v )
ct += 1 # NOTE: Adjust to mimic original code
# RECOVER ORIGINAL STATE-SPACE
sample.ft_D = np.mod( ct+1, 2 )
sample.ft_A = np.mod( np.ceil( ct/2-1 ), 2 )
sample.st = np.int64( np.ceil( ct/4 ) ) - 1
def UPDATE_PHOTOPHYSICS(sample: Sample, params: Params, U: Universal, v: np.int64):
"""
Update #2
===
Updates transition probabilities of the photo-states for each dye (`wi_D`, `wi_A`).
Args:
v (int): Index of the current simulation.
"""
# UPDATE DONOR
idx_D_1 = 1 + np.where( sample.ft_D[:-1] )[0]
idx_D_0 = 1 + np.where(np.logical_not(sample.ft_D[:-1]))[0]
Da = params.wi_D_prior_eta + [ np.sum( sample.ft_D[idx_D_0] ), np.sum( sample.ft_D[idx_D_1] ), sample.ft_D[0] ]
Db = (params.wi_D_prior_zeta + [ np.sum( 1*np.logical_not( sample.ft_D[idx_D_0] ) ),
np.sum( 1*np.logical_not( sample.ft_D[idx_D_1] ) ),
1*np.logical_not( sample.ft_D[0] ) ])
sample.wi_D = U.RNGs[v].betarnd(Da, Db)
# UPDATE ACCEPTOR
idx_A_1 = 1 + np.where( sample.ft_A[:-1] )[0]
idx_A_0 = 1 + np.where(np.logical_not(sample.ft_A[:-1]))[0]
Aa = params.wi_A_prior_eta + [ np.sum( sample.ft_A[idx_A_0] ), np.sum( sample.ft_A[idx_A_1] ), sample.ft_A[0] ]
Ab = (params.wi_A_prior_zeta + [ np.sum( 1*np.logical_not( sample.ft_A[idx_A_0] ) ),
np.sum( 1*np.logical_not( sample.ft_A[idx_A_1] ) ),
1*np.logical_not( sample.ft_A[0] ) ] )
sample.wi_A = U.RNGs[v].betarnd(Aa, Ab)
def UPDATE_TRANSITION_PROBS(sample: Sample, params: Params, U: Universal, v: np.int64):
"""
Update #3
===
Updates the nonhierarchical prior (`bm`) for transition probabilities of conformational states (`pm`, `ps`).
Args:
v (int): Index of the current simulation.
"""
# FIRST GATHER COUNTS
pm = np.zeros( (params.K_lim, params.K_lim), dtype = np.int64 )
for t in range(1, params.T):
pm[ sample.st[t-1], sample.st[t] ] += 1
pm = np.moveaxis(pm, 0, 1) # Adjusted.
ps = np.zeros( params.K_lim, dtype = np.int64 )
jk = sample.st[0]
ps[jk] = 1
x = np.where( pm>0 )
x = zip(x[0], x[1])
# THEN UPDATE BASE
for rep in range(U.rep_bm): # Default: range(15)
# RESAMPLE COUNTS M
M = np.zeros( (params.K_lim+1, params.K_lim), dtype = np.float64 )
Arm: np.ndarray[np.float64] = repmat( params.alpha*sample.bm, params.K_lim+1, 1 )
for a, b in x:
M[a,b] = 1 + ( np.sum( (U.RNGs[v].rand(pm[a,b]-1)*( np.arange(1, pm[a,b]) + Arm[a,b] )) < Arm[a,b], axis = 0 ) )
M.flat[jk] = 1 + ( np.sum( (U.RNGs[v].rand(ps.flat[jk])*( np.arange(1, ps[jk]) + Arm.flat[jk] )) < Arm.flat[jk], axis = 0 ) )
# RESAMPLE BASE
M = np.moveaxis( np.reshape( M, (params.K_lim, params.K_lim+1) ), 0, 1 ) # Adjusted.
sample.bm = U.RNGs[v].dirrnd( params.gamma/params.K_lim + np.sum( M, axis = 0 ) )
# LAST SAMPLE TRANSITION PROBS
sample.pm = U.RNGs[v].dirrnd( pm + params.alpha * np.tile(sample.bm, (params.K_lim, 1)) )
sample.ps = U.RNGs[v].dirrnd( ps + params.alpha * sample.bm )
def UPDATE_EMISSIONS(sample: Sample, params: Params, U: Universal, v: np.int64):
"""
Update #4
===
Updates the photoemission multiplier (`tht`) and photoemission rate priors (`tht`, `rho_D`, `rho_A`, `kap_D`, `kap_A`, `kap_Z`) based on `st`.
Uses Hamiltonian Monte Carlo (`HMC()`), Metropolis-within-Gibbs (`MG()`), and Flipper (`FLIPPER()`) functions.
Args:
v (int): Index of the current simulation.
"""
tht_phi_post = params.tht_prior_phi + np.sum( params.It_D + params.It_A )
sample.K_set, sample.K_loc, sample.K_cnt = np.unique( sample.st, return_inverse=True, return_counts=True )
sample.K_sz = sample.K_set.size
for rep in range(U.rep_tht): # Default: range(5)
# UPDATE tht (direct)
sample.tht = ( params.tht_prior_phi / params.tht_prior_psi
+ params.dD * ( params.T*( params.qD*sample.rho_D + params.qA*sample.rho_A )
+ ( params.qD*params.cDD + params.qA*params.cDA ) * np.sum( sample.ft_D * (sample.ft_A * sample.kap_D[sample.st] + (1-sample.ft_A) * sample.kap_Z) )
+ ( params.qD*params.cAD + params.qA*params.cAA ) * np.sum( sample.ft_D * sample.ft_A * sample.kap_A[sample.st] ) ) )
sample.tht = U.RNGs[v].gamrnd1( tht_phi_post )/sample.tht
# UPDATE BACKGROUND + ACTIVE MULTIPLIERS (HMC) --> Default: range(125)
if U.HMC_L != 0: HMC( sample, params, U, v )
# UPDATE BACKGROUND + ACTIVE MULTIPLIERS (MG) --> Default: range(5)
if U.MG_L != 0: MG( sample, params, U, v )
# FLIP DONOR ACTIVE MULTIPLIERS (MG) --> once
FLIPPER( sample, params, U, v )
# UPDATE INACTIVE MULTIPLIERS (direct)
Sm = np.setdiff1d( np.arange(params.K_lim), sample.K_set )
sample.kap_D[Sm] = U.RNGs[v].gamrnd( params.kap_D_prior_phi, params.kap_D_prior_psi/params.kap_D_prior_phi, Sm.size )
sample.kap_A[Sm] = U.RNGs[v].gamrnd( params.kap_A_prior_phi, params.kap_A_prior_psi/params.kap_A_prior_phi, Sm.size )
def HMC(sample: Sample, params: Params, U: Universal, v: np.int64):
"""
Update Emissions > Hamiltonian Monte Carlo
===
Updates the photoemission multiplier (`tht`) and photoemission rate priors (`tht`, `rho_D`, `rho_A`, `kap_D`, `kap_A`, `kap_Z`).
Args:
v (int): Index of the current simulation.
"""
HMC_eps = U.HMC_eps * U.RNGs[v].rand1()
# MASSES & MOMENTA
m_RD = 1; sample_RD = m_RD * U.RNGs[v].randn1()
m_RA = 1; sample_RA = m_RA * U.RNGs[v].randn1()
m_KD = np.ones(sample.K_sz); sample_KD = m_KD * U.RNGs[v].randn(sample.K_sz)
m_KA = np.ones(sample.K_sz); sample_KA = m_KA * U.RNGs[v].randn(sample.K_sz)
m_KZ = 1; sample_KZ = m_KZ * U.RNGs[v].randn1()
# PRE-ALLOCATION
# 1: upsilon / Potential energy / main parameters. 2: P / Kinetic energy / rate of change.
propos_rD = np.empty((U.HMC_L, 1)); propos_RD = np.empty((U.HMC_L, 1))
propos_rA = np.empty((U.HMC_L, 1)); propos_RA = np.empty((U.HMC_L, 1))
propos_kD = np.empty((U.HMC_L, sample.K_sz)); propos_KD = np.empty((U.HMC_L, sample.K_sz))
propos_kA = np.empty((U.HMC_L, sample.K_sz)); propos_KA = np.empty((U.HMC_L, sample.K_sz))
propos_kZ = np.empty((U.HMC_L, 1)); propos_KZ = np.empty((U.HMC_L, 1))
# INIT STEP
l = 0
propos_rD[l] = sample.rho_D
propos_rA[l] = sample.rho_A
propos_kD[l] = sample.kap_D[sample.K_set]
propos_kA[l] = sample.kap_A[sample.K_set]
propos_kZ[l] = sample.kap_Z
[U_rD, U_rA, U_kD, U_kA, U_kZ] = get_u_grad( sample, params, propos_rD[l], propos_rA[l], propos_kD[l], propos_kA[l], propos_kZ[l] )
propos_RD[l] = sample_RD - 0.5 * HMC_eps * U_rD
propos_RA[l] = sample_RA - 0.5 * HMC_eps * U_rA
propos_KD[l] = sample_KD - 0.5 * HMC_eps * U_kD
propos_KA[l] = sample_KA - 0.5 * HMC_eps * U_kA
propos_KZ[l] = sample_KZ - 0.5 * HMC_eps * U_kZ
# LEAP-FROG FORWARD
for l in range(1, U.HMC_L - 1): # HMC_L (default) = 125
propos_rD[l] = propos_rD[l-1] + HMC_eps * propos_RD[l-1] / m_RD
propos_rA[l] = propos_rA[l-1] + HMC_eps * propos_RA[l-1] / m_RA
propos_kD[l] = propos_kD[l-1] + HMC_eps * propos_KD[l-1] / m_KD
propos_kA[l] = propos_kA[l-1] + HMC_eps * propos_KA[l-1] / m_KA
propos_kZ[l] = propos_kZ[l-1] + HMC_eps * propos_KZ[l-1] / m_KZ
[U_rD, U_rA, U_kD, U_kA, U_kZ] = get_u_grad( sample, params, propos_rD[l], propos_rA[l], propos_kD[l], propos_kA[l], propos_kZ[l] )
propos_RD[l] = propos_RD[l-1] - HMC_eps * U_rD
propos_RA[l] = propos_RA[l-1] - HMC_eps * U_rA
propos_KD[l] = propos_KD[l-1] - HMC_eps * U_kD
propos_KA[l] = propos_KA[l-1] - HMC_eps * U_kA
propos_KZ[l] = propos_KZ[l-1] - HMC_eps * U_kZ
# TERM STEP
l = U.HMC_L - 1
propos_rD[l] = propos_rD[l-1] + HMC_eps * propos_RD[l-1] / m_RD
propos_rA[l] = propos_rA[l-1] + HMC_eps * propos_RA[l-1] / m_RA
propos_kD[l] = propos_kD[l-1] + HMC_eps * propos_KD[l-1] / m_KD
propos_kA[l] = propos_kA[l-1] + HMC_eps * propos_KA[l-1] / m_KA
propos_kZ[l] = propos_kZ[l-1] + HMC_eps * propos_KZ[l-1] / m_KZ
[U_rD, U_rA, U_kD, U_kA, U_kZ] = get_u_grad( sample, params, propos_rD[l], propos_rA[l], propos_kD[l], propos_kA[l], propos_kZ[l] )
propos_RD[l] = propos_RD[l-1] - 0.5 * HMC_eps * U_rD
propos_RA[l] = propos_RA[l-1] - 0.5 * HMC_eps * U_rA
propos_KD[l] = propos_KD[l-1] - 0.5 * HMC_eps * U_kD
propos_KA[l] = propos_KA[l-1] - 0.5 * HMC_eps * U_kA
propos_KZ[l] = propos_KZ[l-1] - 0.5 * HMC_eps * U_kZ
# ACCEPTANCE
log_a = ( get_u( sample, params, sample.rho_D, sample.rho_A, sample.kap_D[sample.K_set], sample.kap_A[sample.K_set], sample.kap_Z )
- get_u( sample, params, propos_rD[-1], propos_rA[-1], propos_kD[-1], propos_kA[-1], propos_kZ[-1] )
+ 0.5 * ( (sample_RD**2 - propos_RD[-1]**2) / m_RD
+ (sample_RA**2 - propos_RA[-1]**2) / m_RA
+ (np.square(sample_KD) - np.square(propos_KD[-1])) / m_KD
+ (np.square(sample_KA) - np.square(propos_KA[-1])) / m_KA
+ (sample_KZ**2 - propos_KZ[-1]**2) / m_KZ ) )
if np.any( np.log(U.RNGs[v].rand1()) < log_a ):
sample.rho_D = propos_rD[-1][0]
sample.rho_A = propos_rA[-1][0]
sample.kap_D[sample.K_set] = propos_kD[-1]
sample.kap_A[sample.K_set] = propos_kA[-1]
sample.kap_Z = propos_kZ[-1][0]
sample.rec[0][0] = sample.rec[0][0] + 1
sample.rec[0][1] = sample.rec[0][1] + 1
def get_u_grad(sample: Sample, params: Params, rD: np.float64, rA: np.float64, kD: np.ndarray[np.float64], kA: np.ndarray[np.float64], kZ: np.float64):
"""
Update Emissions > Hamiltonian Monte Carlo > Gradient of the Log Posterior Density
===
∇_emission log f(emission)
Args:
rD (float): The donor dye's background emission.
rA (float): The acceptor dye's background emission.
kD (array[float]): The donor dye's emissions with FRET.
kA (array[float]): The acceptor dye's emissions with FRET.
kZ (float): The donor dye's emission without FRET.
Returns:
:U_rD: (float) Adjusted donor dye's background emission.
:U_rA: (float) Adjusted acceptor dye's background emission.
:U_kD: (array[float]) Adjusted donor dye's emissions with FRET.
:U_kA: (array[float]) Adjusted acceptor dye's emissions with FRET.
:U_kZ: (float) Adjusted donor dye's emission without FRET.
"""
tmp1 = sample.ft_D * ( sample.ft_A * kD[sample.K_loc] + (1-sample.ft_A) * kZ )
tmp2 = sample.ft_D * sample.ft_A * kA[sample.K_loc]
ID_hat_D = params.It_D / ( rD + params.cDD*tmp1 + params.cAD*tmp2 )
IA_hat_A = params.It_A / ( rA + params.cDA*tmp1 + params.cAA*tmp2 )
tmp1 = sample.tht * params.dD * params.T
U_rD = ( - np.sum(ID_hat_D)
+ params.qD * tmp1
+ (1 - params.rho_D_prior_phi)/rD
+ params.rho_D_prior_phi /params.rho_D_prior_psi )
U_rA = ( - np.sum(IA_hat_A)
+ params.qA * tmp1
+ (1 - params.rho_A_prior_phi)/rA
+ params.rho_A_prior_phi /params.rho_A_prior_psi )
U_kD = np.empty(sample.K_sz)
U_kA = np.empty(sample.K_sz)
for k in range(sample.K_sz):
idx = np.where((sample.ft_D == 1) & (sample.ft_A == 1) & (sample.K_loc == k))[0]
tmp1 = sample.tht * params.dD * idx.size
tmp2 = np.sum(ID_hat_D[idx])
tmp3 = np.sum(IA_hat_A[idx])
U_kD[k] = ( - params.cDD * tmp2
- params.cDA * tmp3
+ ( params.qD*params.cDD + params.qA*params.cDA ) * tmp1
+ ( 1 - params.kap_D_prior_phi )/kD[k]
+ params.kap_D_prior_phi / params.kap_D_prior_psi )
U_kA[k] = ( - params.cAD * tmp2
- params.cAA * tmp3
+ ( params.qD*params.cAD + params.qA*params.cAA ) * tmp1
+ ( 1 - params.kap_A_prior_phi )/kA[k]
+ params.kap_A_prior_phi / params.kap_A_prior_psi )
idx = np.where((sample.ft_D == 1) & (sample.ft_A == 0))[0]
U_kZ = ( - params.cDD * np.sum(ID_hat_D[idx])
- params.cDA * np.sum(IA_hat_A[idx])
+ ( params.qD*params.cDD + params.qA*params.cDA ) * sample.tht * params.dD * idx.size
+ ( 1 - params.kap_Z_prior_phi )/kZ
+ params.kap_Z_prior_phi / params.kap_Z_prior_psi )
return U_rD, U_rA, U_kD, U_kA, U_kZ
def get_u(sample: Sample, params: Params, rD: np.float64, rA: np.float64, kD: np.ndarray[np.float64], kA: np.ndarray[np.float64], kZ: np.float64):
"""
Update Emissions > Hamiltonian Monte Carlo > Log Posterior Density
===
f(emission)
Args:
rD (float): The donor dye's background emission.
rA (float): The acceptor dye's background emission.
kD (array[float]): The donor dye's emissions with FRET.
kA (array[float]): The acceptor dye's emissions with FRET.
kZ (float): The donor dye's emission without FRET.
Returns:
:float:
"""
if ((rD<0) or (rA<0) or np.any(kD<0) or np.any(kA<0) or np.any(kZ<0)):
return np.inf
else:
tmp1 = sample.ft_D * ( sample.ft_A * kD[sample.K_loc] + (1-sample.ft_A) * kZ )
tmp2 = sample.ft_D * sample.ft_A * kA[sample.K_loc]
hat_D = rD + params.cDD*tmp1 + params.cAD*tmp2 # mu_D / tht
hat_A = rA + params.cDA*tmp1 + params.cAA*tmp2 # mu_A / tht
return ( sample.tht*params.dD*( params.qD * np.sum(hat_D) + params.qA * np.sum(hat_A) )
- np.sum( params.It_D * np.log(hat_D) + params.It_A * np.log(hat_A) )
+ (1 - params.rho_D_prior_phi)* np.log(rD) + params.rho_D_prior_phi/params.rho_D_prior_psi* rD
+ (1 - params.rho_A_prior_phi)* np.log(rA) + params.rho_A_prior_phi/params.rho_A_prior_psi* rA
+ (1 - params.kap_D_prior_phi)*np.sum(np.log(kD)) + params.kap_D_prior_phi/params.kap_D_prior_psi*np.sum(kD)
+ (1 - params.kap_A_prior_phi)*np.sum(np.log(kA)) + params.kap_A_prior_phi/params.kap_A_prior_psi*np.sum(kA)
+ (1 - params.kap_Z_prior_phi)* np.log(kZ, where=kZ != 0) + params.kap_Z_prior_phi/params.kap_Z_prior_psi* kZ )
def MG(sample: Sample, params: Params, U: Universal, v: np.int64):
"""
Update Emissions > Metropolis-within-Gibbs
===
Updates `rho_D`, `rho_A`, `kap_D`, `kap_A`, `kap_Z`, `rec`.
Args:
v (int): Index of the current simulation.
"""
tmp1 = sample.tht * params.dD
A = np.array([[params.cDD, params.cAD], [params.cDA, params.cAA]])
tmp2 = sample.ft_D * ( sample.ft_A * sample.kap_D[sample.K_loc] + (1-sample.ft_A) * sample.kap_Z )
tmp3 = sample.ft_D * sample.ft_A * sample.kap_A[sample.K_loc]
sample_mu_D = params.qD * tmp1 * ( sample.rho_D + params.cDD*tmp2 + params.cAD*tmp3 ) # Current photodetection rate of the donor dye.
sample_mu_A = params.qA * tmp1 * ( sample.rho_A + params.cDA*tmp2 + params.cAA*tmp3 ) # Current photodetection rate of the acceptor dye.
for l in range(U.MG_L): # Default: range(5)
ri = U.RNGs[v].randi1(1, 3, True)
propos_rho_D = sample.rho_D * ( 1 if ri == 2 else U.RNGs[v].gamrnd1( params.MG_a_D )/params.MG_a_D ) # Proposed scaling factor for background emission rate of the donor dye.
propos_rho_A = sample.rho_A * ( 1 if ri == 3 else U.RNGs[v].gamrnd1( params.MG_a_A )/params.MG_a_A ) # Proposed scaling factor for background emission rate of the acceptor dye.
b = np.array([sample.rho_D - propos_rho_D, sample.rho_A - propos_rho_A])
x = np.linalg.solve(A, b)
propos_kap_D: np.ndarray[np.float64] = sample.kap_D + x[0] # Proposed scaling factor for donor dye emission rate with FRET.
propos_kap_A: np.ndarray[np.float64] = sample.kap_A + x[1] # Proposed scaling factor for acceptor dye emission rate with FRET.
propos_kap_Z: np.float64 = sample.kap_Z + x[0] # Proposed scaling factor for donor dye emission rate without FRET.
tmp2 = sample.ft_D * ( sample.ft_A * propos_kap_D[sample.K_loc] + (1-sample.ft_A) * propos_kap_Z )
tmp3 = sample.ft_D * sample.ft_A * propos_kap_A[sample.K_loc]
propos_mu_D = params.qD * tmp1 * ( propos_rho_D + params.cDD*tmp2 + params.cAD*tmp3 ) # Proposed photodetection rate of the donor dye.
propos_mu_A = params.qA * tmp1 * ( propos_rho_A + params.cDA*tmp2 + params.cAA*tmp3 ) # Proposed photodetection rate of the acceptor dye.
# ACCEPTANCE
if (np.all(propos_kap_D > 0) and np.all(propos_kap_A > 0) and (propos_kap_Z > 0)):
tmp4A = propos_rho_D/sample.rho_D
tmp4B = sample.rho_D/propos_rho_D
tmp5A = propos_rho_A/sample.rho_A
tmp5B = sample.rho_A/propos_rho_A
log_a = ( np.sum((sample_mu_D-propos_mu_D) + (sample_mu_A-propos_mu_A)
+ params.It_D * np.log( propos_mu_D / sample_mu_D )
+ params.It_A * np.log( propos_mu_A / sample_mu_A ))
+ ( params.rho_D_prior_phi-1 )* np.log( tmp4A ) + params.rho_D_prior_phi* ( sample.rho_D-propos_rho_D )/params.rho_D_prior_psi
+ ( params.rho_A_prior_phi-1 )* np.log( tmp5A ) + params.rho_A_prior_phi* ( sample.rho_A-propos_rho_A )/params.rho_A_prior_psi
+ ( params.kap_D_prior_phi-1 )*np.sum(np.log( propos_kap_D/sample.kap_D )) + params.kap_D_prior_phi*np.sum( sample.kap_D-propos_kap_D )/params.kap_D_prior_psi
+ ( params.kap_A_prior_phi-1 )*np.sum(np.log( propos_kap_A/sample.kap_A )) + params.kap_A_prior_phi*np.sum( sample.kap_A-propos_kap_A )/params.kap_A_prior_psi
+ ( params.kap_Z_prior_phi-1 )* np.log( propos_kap_Z/sample.kap_Z ) + params.kap_Z_prior_phi* ( sample.kap_Z-propos_kap_Z )/params.kap_Z_prior_psi
+ ( 2*params.MG_a_D-1 )*np.log( tmp4B ) + params.MG_a_D*( tmp4A - tmp4B )
+ ( 2*params.MG_a_A-1 )*np.log( tmp5B ) + params.MG_a_A*( tmp5A - tmp5B ) )
will_accept = np.any( np.log(U.RNGs[v].rand1()) < log_a )
else: will_accept = False
if will_accept:
sample.rho_D = propos_rho_D
sample.rho_A = propos_rho_A
sample.kap_D = propos_kap_D
sample.kap_A = propos_kap_A
sample.kap_Z = propos_kap_Z
sample.rec[1][0] = sample.rec[1][0] + 1
sample_mu_D = propos_mu_D
sample_mu_A = propos_mu_A
sample.rec[1][1] = sample.rec[1][1] + 1
def FLIPPER(sample: Sample, params: Params, U: Universal, v: np.int64):
"""
Update Emissions > Metropolis-within-Gibbs > Flipper
===
Swaps the donor emission without FRET `kap_Z` with a random donor emission with FRET `kap_D[k]` and tests.
Updates `kap_D`, `kap_Z`, `rec`.
Args:
v (int): Index of the current simulation.
"""
tmp1 = sample.tht * params.dD
tmp3 = sample.ft_D * sample.ft_A * sample.kap_A[sample.K_loc]
tmp2 = sample.ft_D * ( sample.ft_A * sample.kap_D[sample.K_loc] + (1-sample.ft_A) * sample.kap_Z )
sample_mu_D = params.qD * tmp1 * ( sample.rho_D + params.cDD*tmp2 + params.cAD*tmp3 ) # Current photodetection rate of the donor dye.
sample_mu_A = params.qA * tmp1 * ( sample.rho_A + params.cDA*tmp2 + params.cAA*tmp3 ) # Current photodetection rate of the acceptor dye.
# FLIP HERE
k = U.RNGs[v].randi1(0, params.K_lim)
propos_kap_D: np.ndarray[np.float64] = deepcopy( sample.kap_D ) # Proposed scaling factor for donor dye emission rate with FRET.
propos_kap_D[k] = sample.kap_Z
propos_kap_Z: np.float64 = deepcopy( sample.kap_D[k] ) # Proposed scaling factor for donor dye emission rate without FRET.
tmp2 = sample.ft_D * ( sample.ft_A * propos_kap_D[sample.K_loc] + (1-sample.ft_A) * propos_kap_Z )
propos_mu_D = params.qD * tmp1 * ( sample.rho_D + params.cDD*tmp2 + params.cAD*tmp3 ) # Proposed photodetection rate of the donor dye.
propos_mu_A = params.qA * tmp1 * ( sample.rho_A + params.cDA*tmp2 + params.cAA*tmp3 ) # Proposed photodetection rate of the acceptor dye.
# ACCEPTANCE
log_a = ( np.sum( (sample_mu_D-propos_mu_D) + (sample_mu_A-propos_mu_A)
+ params.It_D * np.log( propos_mu_D / sample_mu_D )
+ params.It_A * np.log( propos_mu_A / sample_mu_A ) )
+ ( params.kap_D_prior_phi-1 )*np.log( propos_kap_D[k]/sample.kap_D[k] ) + params.kap_D_prior_phi*( sample.kap_D[k]-propos_kap_D[k] )/params.kap_D_prior_psi
+ ( params.kap_Z_prior_phi-1 )*np.log( propos_kap_Z /sample.kap_Z ) + params.kap_Z_prior_phi*( sample.kap_Z -propos_kap_Z )/params.kap_Z_prior_psi )
if np.any( np.log(U.RNGs[v].rand1()) < log_a ):
sample.kap_D = propos_kap_D
sample.kap_Z = propos_kap_Z
sample.rec[2][0] = sample.rec[2][0] + 1
sample.rec[2][1] = sample.rec[2][1] + 1