-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcode02_setup.py
537 lines (449 loc) · 24.2 KB
/
code02_setup.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
"""
BayesFRET: File 3
===
An Experiment-Adjusted HDP-HMM to Analyze Surface-Immobilized smFRET Data
About
---
code02_setup.py: The file to generate & save Figure 1 + synthetic data.
Author
---
Code by Jared Hidalgo.
Inspired by MATLAB code from Ioannis Sgouralis, Shreya Madaan, Franky Djutanta, Rachael Kha, Rizal F. Hariadi, and Steve Pressé for "A Bayesian Nonparametric Approach to Single Molecule Förster Resonance Energy Transfer".
"""
# Import dependencies.
import os, sys
spl = __file__.split( os.sep )
DIR_PROGRAM = f"{os.sep}".join( spl[:-1] )
sys.path.append( DIR_PROGRAM )
# Import internal packages for use.
import warnings
# Import external packages for use.
import numpy as np
import matplotlib.ticker as ticker
from scipy.stats import norm, gamma
from scipy.special import beta as betaS
from scipy.special import gamma as gammaS
from scipy.special import kn as besselk
# Import packages for documentation.
from matplotlib.axes import Axes
from code01_classes import Params, True_Samples, Universal
mum = 6
red_a = 0.7
def SHOW_EXPERIMENTAL_DATA(units_t: str, units_I: str, It_D: np.ndarray[np.float64], It_A: np.ndarray[np.float64], T: np.int64, dt: np.float64, U: Universal):
"""
Generate & save Figure 1.
Graphs
---
* Photon intensities `It_A`, `It_D` (graph + density)
* Apparent FRET efficiency `It_A/(It_D+It_A)` (graph + density)
Args:
units_t: Unit of time for figures.
units_I: Unit of intensity for figures.
It_D: Original data: Set of photon intensities of donor dye (size `T`).
It_A: Original data: Set of photon intensities of acceptor dye (size `T`).
T: Size of the dataset (`size(It_D) = size(It_A)`).
dt: δt: Frame rate (a.k.a. measurement acquisition period, or the frequency of data) in seconds, regardless of the unit of time.
Returns:
:U: `Universal` object to handle Figure objects.
"""
fig1 = U.make_figure( "1 | Preview: Experimental Data", True )
tn_bnd = np.arange(T) * dt
xlim = (-1, T*dt+1)
bns = np.int64(T/10)
# Graph photon intensities.
ax1 = fig1.add_subplot( 3, mum, (1, 2*mum-1),
xlim = xlim,
ylabel = "Intensities (" + units_I + ")" )
ax1.grid( True, alpha=0.2 )
ax1.xaxis.set_major_locator(ticker.MultipleLocator( np.int64(T*dt/10) ))
ax1 = plot_stairs( ax1, tn_bnd,
[It_D, It_A],
[U.col_D, U.col_A],
['Donor channel', 'Acceptor channel'], U )
ax1.legend( ncol=2, loc='upper right', shadow=False, framealpha=U.fa, fontsize=U.fs_l )
# Graph densities of photon intensities.
ax1D = fig1.add_subplot( 3, mum, (mum, 2*mum),
xticks = [],
xticklabels = [],
sharey = ax1 )
ax1D.grid( True, alpha=0.2 )
ax1D.yaxis.tick_right()
ax1D.yaxis.set_label_position("right")
ax1D.hist( It_D, color=U.col_D, bins=bns, density=True, orientation="horizontal" )
ax1D.hist( It_A, color=U.col_A, bins=bns, density=True, orientation="horizontal", alpha=red_a )
# Graph apparent FRET efficiency.
ax2 = fig1.add_subplot( 3, mum, (2*mum+1, 3*mum-1),
sharex = ax1,
xlabel = f"Time in smFRET experiment ({units_t})",
ylim = (-10, 110),
ylabel = "Apparent FRET\nefficiency (%)" )
ax2.grid( True, alpha=0.2 )
ax2.xaxis.set_major_locator(ticker.MultipleLocator( np.int64(T*dt/10) ))
ax2 = plot_stairs( ax2, tn_bnd,
100*It_A/(It_D+It_A),
U.col_m,
'Apparent', U )
# Graph density of apparent FRET efficiency.
ax2D = fig1.add_subplot( 3, mum, 3*mum,
xticks = [],
xticklabels = [],
xlabel = "Density",
sharey = ax2 )
ax2D.grid( True, alpha=0.2 )
ax2D.yaxis.tick_right()
ax2D.yaxis.set_label_position("right")
ax2D.hist( 100*It_A/(It_D+It_A), color=U.col_m, bins=bns, density=True, orientation="horizontal" )
if U.show:
fig1.show()
fig1.canvas.flush_events()
fig1.savefig(U.func_getActivePath( 'BayesFRET_fig01 preview_data.png' ))
return U
def GENERATE_SYNTHETIC_DATA(U: Universal):
"""
Generate & store data + Figure 1.
Graphs
---
* States of observed molecule `st`
* States of donor + acceptor dyes `ft_D`, `ft_A`
* Photon intensities `It_A`, `It_D` (graph + density)
* Apparent FRET efficiency `It_A/(It_D+It_A)` (graph + density)
Returns:
:It_D: Set of photon intensities of donor dye.
:It_A: Set of photon intensities of acceptor dye.
:units_t: Unit of time for figures.
:units_I: Unit of intensity for figures.
:dt: δt: Frame rate (a.k.a. measurement acquisition period, or the frequency of data) in seconds, regardless of the unit of time.
:dD: δτ = δt (1-d): Exposure period, or how much time within the frame rate (δt/`dt`) is dedicated to capturing the intensity using the dead time (d).
:cDD: Cross-talk proportion from donor dye to donor channel. `cDD + cDA = 1`
:cAA: Cross-talk proportion from acceptor dye to acceptor channel. `cAA + cAD = 1`
:qD: Detector quantum efficiency (photodetection percentage) for the donor dye.
:qA: Detector quantum efficiency (photodetection percentage) for the acceptor dye.
:T: Size of the dataset (`size(It_D) = size(It_A)`).
:U: `Universal` object to handle Figure objects.
"""
units_I = "photons"
units_t = "s"
f = 10/1 # Frame rate 1/[t]
d = 0.01 # Fraction of dead time per measurement acquisition period (dt)
T = 1000 # Total number of steps
c_D = 0.9 # Cross-talk coefficients
c_A = 0.75
q_D = 0.85 # Quantum efficiency
q_A = 0.75
tht = 1e3 # Overall emission rate [I]/[t]
rho_D = 0.05 # Background emission multipliers
rho_A = 0.10
kap_Z = 6.0 # Dye emission multipliers
kap_D = np.array( [3.5, 2.5, 1.5], dtype=np.float64 )
kap_A = np.array( [1.0, 2.0, 3.0], dtype=np.float64 )
pm = np.array([[0.96, 0.04, 0.00], # Transtion probs
[0.04, 0.92, 0.04],
[0.00, 0.04, 0.96]], dtype=np.float64 )
ps = np.array( [0.50, 0.50, 0.00], dtype=np.float64 )
w0_D = 0.25 # 0 -> 1
w1_D = 0.98 # 1 -> 1
ws_D = 0.80 # * -> 1
w0_A = 0.15 # 0 -> 1
w1_A = 0.96 # 1 -> 1
ws_A = 0.90 # * -> 1
D = T/f # Total duration [t]
ksi_D = rho_D * tht # Background emission rates [I]/[t]
ksi_A = rho_A * tht
lam_D = kap_D * tht # Dye emission rates [I]/[t]
lam_A = kap_A * tht
lam_Z = kap_Z * tht
# GENERATE STATE TRACES
st = np.zeros(T, dtype = np.int64)
ft_D = np.zeros(T)
ft_A = np.zeros(T)
st[0] = U.get_samples(ps, -1)
ft_D[0] = U.RNGs[-1].rand1() <= ws_D
ft_A[0] = U.RNGs[-1].rand1() <= ws_A
for t in range(1, T):
st[t] = U.get_samples(pm[ st[t-1] ], -1)
ft_D[t] = U.RNGs[-1].rand1() <= (w1_D if ft_D[t-1] else w0_D)
ft_A[t] = U.RNGs[-1].rand1() <= (w1_A if ft_A[t-1] else w0_A)
# GENERATE INTENSITIES
dt = D/T # [t]
dD = (1-d) * dt # [t]
It_D = ksi_D + c_D * ft_D * ( ft_A*lam_D[st] + (1-ft_A)*lam_Z ) + ( 1-c_A ) * ft_D * ft_A * lam_A[st]
It_D = U.RNGs[-1].poissrnd( q_D*dD*It_D )
It_D = np.maximum( It_D, np.full_like(It_D, np.finfo(float).tiny) )
It_A = ksi_A + ( 1-c_D ) * ft_D * ( ft_A*lam_D[st] + (1-ft_A)*lam_Z ) + c_A * ft_D * ft_A * lam_A[st]
It_A = U.RNGs[-1].poissrnd( q_A*dD*It_A )
It_A = np.maximum( It_A, np.full_like(It_A, np.finfo(float).tiny) )
# Store true values for comparison.
U.TS.true_line = 100*lam_A[st]/(lam_D[st]+lam_A[st])
U.TS.true_st = st
U.TS.true_K_set, U.TS.true_K_loc, U.TS.true_K_cnt = np.unique( st, return_inverse=True, return_counts=True )
U.TS.true_K_sz = U.TS.true_K_set.size
U.TS.true_tht = tht
U.TS.true_rho_D = rho_D
U.TS.true_rho_A = rho_A
U.TS.true_kap_D = kap_D
U.TS.true_kap_A = kap_A
U.TS.true_kap_Z = kap_Z
U.TS.true_ksi_D = ksi_D
U.TS.true_ksi_A = ksi_A
U.TS.true_lam_D = lam_D
U.TS.true_lam_A = lam_A
U.TS.true_lam_Z = lam_Z
U.TS.true_ft_D = ft_D
U.TS.true_ft_A = ft_A
U.TS.true_wi_D = [w0_D, w1_D, ws_D]
U.TS.true_wi_A = [w0_A, w1_A, ws_A]
U.TS.true_pm = pm
U.TS.true_ps = ps
# GRAPH
U = plot_synthetic_data(kap_D, T, dt, st, ft_D, ft_A, It_D, It_A, units_t, units_I, lam_D, lam_A, U)
return It_D, It_A, units_t, units_I, dt, dD, c_D, c_A, q_D, q_A, T, U
def REUSE_SYNTHETIC_DATA(params: Params, true: True_Samples, U: Universal):
"""
Setup existing synthetic data.
"""
U.TS = true
U = plot_synthetic_data( true.true_kap_D, params.T, params.dt,
true.true_st, true.true_ft_D, true.true_ft_A, params.It_D, params.It_A,
params.units_t, params.units_I, true.true_lam_D, true.true_lam_A, U )
return U
def plot_synthetic_data(kap_D, T, dt, st, ft_D, ft_A, It_D, It_A, units_t, units_I, lam_D, lam_A, U: Universal):
"""
Create Figure 1.
"""
# GRAPH
M = kap_D.size
tn_bnd = np.arange(T) * dt # [t]
bns = np.int64(T/10)
xlim = (-1, T*dt+1)
fig1 = U.make_figure( "1 | Preview: Synthetic Data", True )
# Graph molecular states.
ax1 = fig1.add_subplot( 5, mum, (1, mum-1),
xlim = xlim,
ylim = (0, M+1),
ylabel = "Conformational\nstate $k$",
yticks = range(1, M+1),
yticklabels = [i for i in range(1, M+1)] )
ax1.grid( True, alpha=0.2 )
ax1.xaxis.set_major_locator(ticker.MultipleLocator( np.int64(T*dt/10) ))
ax1 = plot_stairs( ax1, tn_bnd, st+1, U.col_M, [], U )
# Graph states of fluorophores.
ax2 = fig1.add_subplot( 5, mum, (mum+1, 2*mum-1),
sharex = ax1,
ylim = (-1, 2),
yticks = (0, 1),
yticklabels = ['Dark', 'Bright'],
ylabel = "Photo-State" )
ax2.grid( True, alpha=0.2 )
ax2 = plot_stairs( ax2, tn_bnd,
[ft_D + 0.02, ft_A - 0.02],
[U.col_D, U.col_A],
['Donor', 'Acceptor'], U )
# Put legend here.
ax2D = fig1.add_subplot( 5, mum, 2*mum,
alpha = 0, frameon = False )
ax2D.plot( [], [], color=U.col_D, label="Donor" )
ax2D.plot( [], [], color=U.col_A, label="Acceptor" )
ax2D.legend( loc="center left", shadow=False, framealpha=U.fa, fontsize=U.fs_l )
ax2D.set_xticks([])
ax2D.set_yticks([])
# Graph photon intensities.
ax3 = fig1.add_subplot( 5, mum, (2*mum+1, 4*mum-1),
sharex = ax1,
ylabel = "Intensities (" + units_I + ")" )
ax3.grid( True, alpha=0.2 )
ax3 = plot_stairs( ax3, tn_bnd,
[It_D, It_A],
[U.col_D, U.col_A],
[None, None], U ) # ['Donor channel', 'Acceptor channel']
# Graph densities of photon intensities.
ax3D = fig1.add_subplot( 5, mum, (3*mum, 4*mum),
xticks = [],
xticklabels = [],
sharey = ax3 )
ax3D.grid( True, alpha=0.2 )
ax3D.yaxis.tick_right()
ax3D.yaxis.set_label_position("right")
ax3D.hist( It_D, color=U.col_D, bins=bns, density=True, orientation="horizontal" )
ax3D.hist( It_A, color=U.col_A, bins=bns, density=True, orientation="horizontal", alpha=red_a )
# Graph apparent FRET efficiency.
ax4 = fig1.add_subplot( 5, mum, (4*mum+1, 5*mum-1),
sharex = ax1,
xlabel = f"Time in smFRET experiment ({units_t})",
ylim = (-10, 140),
ylabel = "FRET\nefficiency (%)" )
ax4.grid( True, alpha=0.2 )
ax4.xaxis.set_major_locator(ticker.MultipleLocator( np.int64(T*dt/10) ))
ax4 = plot_stairs( ax4, tn_bnd,
[100*It_A/(It_D+It_A), 100*lam_A[st]/(lam_D[st]+lam_A[st])],
[U.col_m, U.col_M],
['Apparent', 'True'], U )
ax4.legend( ncol=2, loc='upper right', shadow=False, framealpha=U.fa, fontsize=U.fs_l )
# Graph density of apparent FRET efficiency.
ax4D = fig1.add_subplot( 5, mum, 5*mum,
xlabel = "Density",
xticks = [],
xticklabels = [],
sharey = ax4 )
ax4D.grid( True, alpha=0.2 )
ax4D.yaxis.tick_right()
ax4D.yaxis.set_label_position("right")
ax4D.hist( 100*It_A/(It_D+It_A), color=U.col_m, bins=bns, density=True, orientation="horizontal" )
if U.show:
fig1.show()
fig1.canvas.flush_events()
fig1.savefig(U.func_getActivePath( 'BayesFRET_fig01 preview_data.png' ))
return U
def plot_stairs(ax: Axes, r_edges: np.ndarray[np.float64], w_centers: list[np.ndarray[np.float64]], colors: list[tuple], labels: list[str], U: Universal) -> Axes:
"""
Template to make step graph.
"""
if len(r_edges) == 0 and len(w_centers) == 0:
r_edges = np.array([[0], [1], [2.5], [3], [4]])
w_centers = U.RNGs[-1].rand((r_edges.size - 1, 5))
if len(colors) == 3:
ax.step( r_edges, w_centers, linewidth=0.5, color=colors, label=labels )
elif len(w_centers) == 2:
ax.step( r_edges, w_centers[0], linewidth=0.5, color=colors[0], label=labels[0] )
ax.step( r_edges, w_centers[1], linewidth=0.5, color=colors[1], label=labels[1] )
return ax
def GRAPH_PRIORS(params: Params, U: Universal):
"""
Generates & saves Figure 2a.
"""
fig2 = U.make_figure( "2 | Priors", True )
app = np.array([params.It_D, params.It_A]) / params.dD
lambda_ref = np.mean( app )
w_lim = np.array([0, 1.2*np.max( app )])
num = 3
mum = 4
s11 = fig2.add_subplot( num, mum, (0*mum+1, (num-2)*mum+1),
ylim = w_lim,
ylabel = "Photoemission (PE) rate (" + params.units_I + "/" + params.units_t + ")",
title = "Apparent Dye PE" )
s11.hist( params.It_D/params.dD, bins='auto', density=True, orientation='horizontal', facecolor=U.col_D, alpha=0.9, ec='black', label="$\\lambda_*^D$" )
s11.hist( params.It_A/params.dD, bins='auto', density=True, orientation='horizontal', facecolor=U.col_A, alpha=0.5, ec='black', label="$\\lambda_*^A$" )
s11.plot( s11.get_xlim(), [lambda_ref]*2, ':', color='k', label="$\\lambda_*$ mean" )
s11.legend( loc='upper right', framealpha=0, fontsize=U.fs_l )
s11.grid( True, alpha=0.3 )
s11.ticklabel_format( style='sci', axis='x', scilimits=(0,0) )
s12 = fig2.add_subplot( num, mum, (0*mum+2, (num-2)*mum+2),
xlim = (0, 1),
ylim = w_lim,
title = "Multiplier Prior" )
s12 = show_prior( s12, 'gamma', '-', 'b', params.tht_prior_phi, params.tht_prior_psi/params.tht_prior_phi, U.eps, 1, 0, 0, "$\\theta$" )
s12.plot( s12.get_xlim(), [lambda_ref]*2, ':', color='k' )
s12.legend( loc='upper right', framealpha=0, fontsize=U.fs_l )
s12.grid( True, alpha=0.3 )
s13 = fig2.add_subplot( num, mum, (0*mum+3, (num-2)*mum+3),
xlim = (0, 1),
ylim = w_lim,
title = "Background PE Priors" )
s13 = show_prior( s13, 'besselK', '--', U.col_D, [params.tht_prior_phi, params.rho_D_prior_phi], [params.tht_prior_psi, params.rho_D_prior_psi], U.eps, 1, 0, 0, "$\\xi^D$" )
s13 = show_prior( s13, 'besselK', '--', U.col_A, [params.tht_prior_phi, params.rho_A_prior_phi], [params.tht_prior_psi, params.rho_A_prior_psi], U.eps, 0.7, 0, 0, "$\\xi^A$" )
s13.plot( s13.get_xlim(), [lambda_ref]*2, ':', color='k' )
s13.legend( loc='upper right', framealpha=0, fontsize=U.fs_l )
s13.grid( True, alpha=0.3 )
lb = (0,1,1)
s14 = fig2.add_subplot( num, mum, (0*mum+4, (num-2)*mum+4),
xlim = (0, 1),
ylim = w_lim,
title = "Dye PE Priors" )
s14 = show_prior( s14, 'besselK', '--', U.col_D, [params.tht_prior_phi, params.kap_D_prior_phi], [params.tht_prior_psi, params.kap_D_prior_psi], U.eps, 1, 0, 0, "$\\lambda^D$" )
s14 = show_prior( s14, 'besselK', '--', U.col_A, [params.tht_prior_phi, params.kap_A_prior_phi], [params.tht_prior_psi, params.kap_A_prior_psi], U.eps, 0.7, 0, 0, "$\\lambda^A$" )
s14 = show_prior( s14, 'besselK', '--', lb, [params.tht_prior_phi, params.kap_Z_prior_phi], [params.tht_prior_psi, params.kap_Z_prior_psi], U.eps, 0.4, 0, 0, "$\\lambda^Z$" )
s14.plot( s14.get_xlim(), [lambda_ref]*2, ':', color='k' )
s14.legend( loc='upper right', framealpha=0, fontsize=U.fs_l )
s14.grid( True, alpha=0.3 )
s21 = fig2.add_subplot( num, mum, (num-1)*mum+1,
xlim = (0, 1),
ylim = (-10, 110),
yticks = range(0, 120, 20),
ylabel = "Efficiency (%)",
xlabel = "Probability density",
title = "FRET Efficiency Prior" )
s21 = show_prior( s21, 'eff_custom', '--', 'b', [params.kap_D_prior_phi, params.kap_D_prior_psi], [params.kap_A_prior_phi, params.kap_A_prior_psi], U.eps, 1, 0.05, 0, "$E$" )
xlim = s21.get_xlim()
s21.plot( xlim, [0]*2, ':', color='k', label="Limits" )
s21.plot( xlim, [100]*2, ':', color='k' )
s21.legend( loc='center left', framealpha=0, fontsize=U.fs_l )
s21.grid( True, alpha=0.3 )
s22 = fig2.add_subplot( num, mum, (num-1)*mum+2,
xlim = (0, 1),
ylim = (0, 5),
yticks = range(0, 6),
xlabel = "Probability density",
ylabel = "Value (1)",
title = "Signal-to-Noise Ratio Priors" )
BS_temp = np.linspace( s22.get_ylim()[0], s22.get_ylim()[1], num=1000, endpoint=True )
fD_temp = params.rho_D_prior_psi / params.kap_D_prior_psi * params.kap_D_prior_phi / params.rho_D_prior_phi
fA_temp = params.rho_A_prior_psi / params.kap_A_prior_psi * params.kap_A_prior_phi / params.rho_A_prior_phi
pD_temp = fD_temp * np.power( fD_temp*BS_temp, params.kap_D_prior_phi-1 ) * np.power( 1+(fD_temp*BS_temp), -params.kap_D_prior_phi-params.rho_D_prior_phi ) / betaS( params.kap_D_prior_phi, params.rho_D_prior_phi )
pA_temp = fA_temp * np.power( fA_temp*BS_temp, params.kap_A_prior_phi-1 ) * np.power( 1+(fA_temp*BS_temp), -params.kap_A_prior_phi-params.rho_A_prior_phi ) / betaS( params.kap_A_prior_phi, params.rho_A_prior_phi )
xlim = s22.get_xlim()
pD_temp = np.amin(xlim) + 1*(np.amax(xlim)-np.amin(xlim)) * pD_temp / np.amax(pD_temp)
pA_temp = np.amin(xlim) + 1*(np.amax(xlim)-np.amin(xlim)) * pA_temp / np.amax(pA_temp)
s22.plot( pD_temp, BS_temp, '--', color=U.col_D, label="$SNR^D$", alpha=1 )
s22.plot( pA_temp, BS_temp, '--', color=U.col_A, label="$SNR^A$", alpha=0.7 )
s22.plot( xlim, [1]*2, ':', color='k', label="" )
s22.legend( loc='upper right', framealpha=0, fontsize=U.fs_l )
s22.grid( True, alpha=0.3 )
s23 = fig2.add_subplot( num, mum, (num-1)*mum+3,
xlim = (0, 1),
ylim = (0, 5),
yticks = range(0, 6),
xlabel = "Probability density",
title = "Background Scaling Priors" )
s23 = show_prior( s23, 'gamma', '-', U.col_D, params.rho_D_prior_phi, params.rho_D_prior_psi/params.rho_D_prior_phi, U.eps, 1, 0, 0, "$\\rho^D$" )
s23 = show_prior( s23, 'gamma', '-', U.col_A, params.rho_A_prior_phi, params.rho_A_prior_psi/params.rho_A_prior_phi, U.eps, 0.7, 0, 0, "$\\rho^A$" )
s23.plot( s23.get_xlim(), [1]*2, ':', color='k' )
s23.legend( loc='upper right', framealpha=0, fontsize=U.fs_l )
s23.grid( True, alpha=0.3 )
s24 = fig2.add_subplot( num, mum, (num-1)*mum+4,
xlim = (0, 1),
ylim = (0, 5),
yticks = range(0, 6),
xlabel = "Probability density",
title = "Dye Scale Priors" )
s24 = show_prior( s24, 'gamma', '-', U.col_D, params.kap_D_prior_phi, params.kap_D_prior_psi/params.kap_D_prior_phi, U.eps, 1, 0, 0, "$\\kappa^D$" )
s24 = show_prior( s24, 'gamma', '-', U.col_A, params.kap_A_prior_phi, params.kap_A_prior_psi/params.kap_A_prior_phi, U.eps, 0.7, 0, 0, "$\\kappa^A$" )
s24 = show_prior( s24, 'gamma', '-', lb, params.kap_Z_prior_phi, params.kap_Z_prior_psi/params.kap_Z_prior_phi, U.eps, 0.4, 0, 0, "$\\kappa^Z$" )
s24.plot( s24.get_xlim(), [1]*2, ':', color='k' )
s24.legend( loc='upper right', framealpha=0, fontsize=U.fs_l )
s24.grid( True, alpha=0.3 )
if U.show:
fig2.show()
fig2.canvas.flush_events()
fig2.savefig(U.func_getActivePath( f"BayesFRET_fig02 priors.png" ))
def show_prior(ax: Axes, tag: str, line: str, color, p1, p2, eps, a: np.float64, exX: np.float64, exY: np.float64, label: str):
y_range = np.linspace( ax.get_ylim()[0], ax.get_ylim()[1], num = 1000, endpoint = True )
if tag == 'norm': # p1 = mu, p2 = sg
x_range = norm.pdf(y_range, p1, p2) + eps
elif tag == 'symnorm': # p1 = mu, p2 = sg
x_range = 0.5 * norm.pdf(y_range, p1, p2) + 0.5 * norm.pdf(y_range, -p1, p2) + eps
elif tag == 'gamma': # p1 = a, p2 = b
x_range = gamma.pdf(y_range, a=p1, scale=p2)
elif tag == 'eff_custom': # p1 = [phi_D,psi_D], p2 = [phi_A,psi_A]
y_range = y_range / 100
tmp = 1 / y_range-1
x_range = ( np.power( p2[1] / p1[1] * p1[0] / p2[0], p1[0] )
/ betaS( p1[0], p2[0] )
* np.power( tmp, p1[0]-1 )
* np.power( 1 + p2[1] / p1[1] * p2[0] / p1[0] * tmp, -p1[0]-p2[0] )
/ np.square(y_range) )
x_range[y_range < 0] = 0
x_range[y_range > 1] = 0
y_range = y_range * 100
elif tag == 'besselK': # p1[0:1] = phi[0:1], p2 = psi[0:1]
warnings.filterwarnings('ignore')
tmp = p1[0]*p1[1] / ( p2[0]*p2[1] ) * y_range
x_range = ( eps + 2/( gammaS(p1[0]) * gammaS(p1[1]) )
* np.power( tmp, 0.5*(p1[0] + p1[1]) )
* besselk( p1[0] - p1[1], 2*np.sqrt(tmp) ) / y_range )
x_range[y_range < 0] = 0
warnings.resetwarnings()
else: raise Exception( "INTERNAL ERROR: Unknown tag for code02_setup.py > show_prior()! Try again!" )
x_range = ax.get_xlim()[0] + 1*( ax.get_xlim()[1] - ax.get_xlim()[0] ) * x_range / np.amax( x_range, where=~np.isnan(x_range), initial=-1 )
ax.plot( x_range, y_range, line, color=color, alpha=a, label=label )
if exX != 0: ax.set_xlim(( ax.get_xlim()[0] + exX, ax.get_xlim()[1] + exX ))
if exY != 0: ax.set_ylim(( ax.get_ylim()[0] + exY, ax.get_ylim()[1] + exY ))
return ax