-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcode01_classes.py
709 lines (570 loc) · 34.1 KB
/
code01_classes.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
"""
BayesFRET: File 2
===
An Experiment-Adjusted HDP-HMM to Analyze Surface-Immobilized smFRET Data
About
---
code01_classes.py: The file to host custom classes used across the rest of the files.
Classes: `RNG`, `True Params`, `Universal`, `Params`, `Sample`, `Chain_History`
Author
---
Code by Jared Hidalgo.
Inspired by MATLAB code from Ioannis Sgouralis, Shreya Madaan, Franky Djutanta, Rachael Kha, Rizal F. Hariadi, and Steve Pressé for "A Bayesian Nonparametric Approach to Single Molecule Förster Resonance Energy Transfer".
"""
# Import internal packages for use.
import os, platform
# Import external packages for use.
import numpy as np
from numpy.matlib import repmat
import matplotlib.pyplot as plt
# Import external packages for documentation.
from PySide6.QtGui import (QAction, QIcon)
from PySide6.QtWidgets import QSystemTrayIcon
from matplotlib.figure import Figure
DPI = 200
plt.rcParams.update({
"font.size": 5,
"figure.dpi": DPI,
"xtick.labelsize": 4,
"ytick.labelsize": 4
})
class RNG:
"""
Manage random number generators in MATLAB style.
"""
def __init__(self, seed: np.int64 = None):
self.seed_int = seed
"""The specific RNG seed (int) for the Generator class."""
self.seed_str = str(self.seed_int) if seed != None else "[None]"
"""The specific RNG seed (str) for the Generator class."""
self.rng = np.random.default_rng( seed )
"""The Generator class hosting the RNG functions."""
self.matx_randg = np.vectorize( self.rng.gamma )
"""Vectorization of the Gamma distribution."""
self.matx_poiss = np.vectorize( self.rng.poisson )
"""Vectorization of the Poisson distribution."""
def rand1(self):
"""Draws a sample from the “continuous uniform” distribution over [0.0, 1.0)."""
return self.rng.random()
def rand(self, sz: np.int64|tuple[np.int64]):
"""
Draws samples from the “continuous uniform” distribution over [0.0, 1.0).
Args:
sz: The length (`np.int64`) or shape (`tuple[np.int64]`) of the resulting array. Value(s) must be `> 1`.
"""
return self.rng.random( size = sz )
def randi1(self, low: np.int64, high: np.int64, endpoint = False) -> np.int64:
"""
Draws a random integer from the "discrete uniform" distribution.
Args:
low: Minimum integer.
high: Maximum integer.
endpoint: Include `high`, optional.
"""
return self.rng.integers( low, high, endpoint = endpoint )
def randi(self, low: np.int64, high: np.int64, sz: np.int64|tuple[np.int64], endpoint = False) -> np.ndarray[np.int64]:
"""
Draws random integers from the "discrete uniform" distribution.
Args:
low: Minimum integer.
high: Maximum integer.
sz: Length (np.int64) or shape (tuple[np.int64]) of the resulting array.
endpoint: Include `high`, optional.
"""
return self.rng.integers( low, high, size = sz, endpoint = endpoint )
def randn1(self):
"""Draws a sample from the standard Normal distribution over [0.0, 1.0)."""
return self.rng.standard_normal()
def randn(self, sz: np.int64|tuple[np.int64]) -> np.ndarray[np.float64]:
"""
Draws samples from the standard Normal distribution (mean=0, stdev=1).
Args:
sz: The length (`np.int64`) or shape (`tuple[np.int64]`) of the resulting array. Value(s) must be `> 1`.
"""
return self.rng.standard_normal( size = sz )
def poissrnd(self, lambd: np.ndarray[np.float64]) -> np.ndarray[np.float64]:
"""
Draws samples from Pois(`lambd`).
Args:
lambd: Parameter λ of the Poisson distribution. `lambd > 0`.
"""
return self.matx_poiss( lambd )
def betarnd(self, a: np.ndarray[np.float64|np.bool_], b: np.ndarray[np.float64|np.bool_]) -> np.ndarray[np.float64]:
"""
Draws samples from Beta(`a`, `b`). `a`, `b` can be arrays of the same size or simply floats.
Args:
a: Shapes of the Beta distribution α (`all(a > 0)`)
b: Scales of the Beta distribution β (`all(b > 0)`)
"""
return self.rng.beta( a, b )
def gamrnd1(self, a: np.float64, b = 1.0):
"""
Draws a sample from Gamma(`a`, `b`). If scale = 1, then leave `b` blank.
Args:
a: Shape of the Gamma distribution α (`a > 0`)
b: Scale of the Gamma distribution β (`b > 0`), optional
"""
return self.rng.gamma( a, b )
def gamrnd(self, a: np.float64, b: np.float64, sz: np.int64|tuple[np.int64]) -> np.ndarray[np.float64]:
"""
Draws samples from Gamma(`a`, `b`).
Args:
a: Shape of the Gamma distribution α (`a > 0`)
b: Scale of the Gamma distribution β (`b > 0`)
sz: The length (`np.int64`) or shape (`tuple[np.int64]`) of the resulting array. Value(s) must be `>= 2`.
"""
return self.rng.gamma( a, b, size = sz )
def dirrnd(self, a: np.ndarray[np.float64]) -> np.ndarray[np.float64]:
"""
Custom function that draws samples from the Dirichlet distribution.
"""
p = self.matx_randg(a)
return p / (np.sum(p) if p.shape[0] == p.size else np.sum(p, 1)[:, None])
class True_Samples:
"""
Save and categorize true values of the samples. For synthetic data only.
"""
true_line: np.ndarray[np.float64]
"""True FRET efficiencies for graphing."""
true_st: np.ndarray[np.float64]
"""s_n True: Conformational states of the observed molecule."""
true_K_set: np.ndarray[np.int64]
"""set(K) True: The set of unique conformational states from `unique(sample.st)`."""
true_K_loc: np.ndarray[np.int64]
"""location(K) True: The locations of the unique conformational states from `unique(sample.st, return_inverse=True)`."""
true_K_cnt: np.ndarray[np.int64]
"""count(K) True: The counts of the unique conformational states from `unique(sample.st, return_counts=True)."""
true_K_sz: np.int64
"""K True: Number of true conformational states."""
true_ft_D: np.ndarray[np.bool_]
"""f_t^D True: Photo-states of the donor dye throughout the experiment."""
true_ft_A: np.ndarray[np.bool_]
"""f_t^A True: Photo-states of the acceptor dye throughout the experiment."""
true_tht: np.float64
"""θ True: Photoemission multiplier."""
true_rho_D: np.float64
"""ρ^D True: Scaling factor of background emission rates for the donor dye."""
true_rho_A: np.float64
"""ρ^A True: Scaling factor of background emission rates for the acceptor dye."""
true_kap_D: np.ndarray[np.float64]
"""κ^D True: Scaling factor of photoemission rates for the donor dye with FRET."""
true_kap_A: np.ndarray[np.float64]
"""κ^A True: Scaling factor of photoemission rates for the acceptor dye with FRET."""
true_kap_Z: np.float64
"""κ^Z True: Scaling factor of photoemission rate for the donor dye without FRET."""
true_ksi_D: np.float64
"""ξ^D True: Prior of background emission rates for the donor dye."""
true_ksi_A: np.float64
"""ξ^A True: Prior of background emission rates for the acceptor dye."""
true_lam_D: np.ndarray[np.float64]
"""λ^D True: Prior of photoemission rates for the donor dye with FRET."""
true_lam_A: np.ndarray[np.float64]
"""λ^A True: Prior of photoemission rates for the acceptor dye with FRET."""
true_lam_Z: np.float64
"""λ^Z True: Prior of photoemission rate for the donor dye without FRET."""
true_wi_D: list[np.float64]
"""ω^D True: Transition probabilities of the photo-states for the donor dye."""
true_wi_A: list[np.float64]
"""ω^A True: Transition probabilities of the photo-states for the acceptor dye."""
true_pm: np.ndarray[np.float64]
"""π True: The transition matrix between K states.\n\nSize: `K*^2`"""
true_ps: np.ndarray[np.float64]
"""π* Current: The probability array that state K will occur in the initial state.\n\nSize: `K`"""
def __init__(self):
pass
class Universal:
"""
Object to carry variables + functions across files + classes.
"""
plt = plt
OS = platform.system()
"""The current operating system."""
DIR_PROGRAM = os.getcwd()
"""Current directory of the BayesFRET program.\n\nCHANGE THIS IF FOLDER MOVED AFTER SIMULATION!"""
dpi = DPI
"""Dots per inch of the figure."""
eps = np.spacing(1) # = np.finfo(float).eps
col_M = (0, 0, 0.5)
"""Color for main molecule - Blue"""
col_m = (0, 1, 1)
"""Color for auxiliary molecule - Light blue"""
col_D = (0.3, 1.0, 0.3)
"""Color for main donor - Light green"""
col_A = (1.0, 0.3, 0.3)
"""Color for main acceptor - Light red"""
col_HM = (0, 0, 0)
"""Color for Hamiltonian Monte Carlo - Black"""
col_MG = (1, 0, 1)
"""Color for Metropolis-Hastings - Pink"""
col_FL = (1, 0.5, 0)
"""Color for Flipper - Orange"""
col_R = [(1, 0, 0),
(204/255, 204/255, 0.0),
(0, 204/255, 0),
(0, 0, 1)]
"""Colors for random number generators - Red, Yellow, Green, Blue"""
fs_l = 5
"""Font size for legend text."""
fa = 0
"""Alpha for legend frame."""
figs: list[Figure] = []
def __init__( self, title: str, show: bool, large: bool, is_syn: bool, RNGs: list[RNG], ad: str, rd: str, theme: str,
Q: np.int64, bi: np.float64, rep_tht: np.int64, rep_bm: np.int64, MG_L: np.int64, HMC_L: np.int64, HMC_eps: np.float64,
mt3: QAction, mr: QAction, tray: QSystemTrayIcon, ts: str ):
self.title = title
"""Title of the BayesFRET program."""
self.show = show
"""Boolean to open windows for figures (`True`) or not (`False`)."""
self.large = large
"""Boolean if figures are large (`True`) or not (`False`)."""
self.w = 3200 if large else 1280
"""Width of figures."""
self.h = 1800 if large else 720
"""Height of figures."""
self.is_syn = is_syn
"""Boolean if data is synthetic (`True`) or experimental (`False`)."""
self.TS = True_Samples() if is_syn else None
"""Collection of true parameters (`True_Samples`). For synthetic data + internal use only. `None` when exported."""
self.line_indx = 2 if is_syn else 1
"""Index of line for sampled data. 1 if experimental. 2 if synthetic."""
self.dt = "syn" if is_syn else "exp"
"""Data type for image filename."""
self.RNGs = RNGs
"""List of RNG classes. `RNGs[-1]` is strictly to generate synthetic data (no seed). The rest are for each simulation."""
self.len_seeds = len(RNGs) - 1
"""Number of RNG seeds, one for each simulation, not including `RNGs[-1]`."""
self.range_seeds = range(self.len_seeds)
"""Range for seed values (0-3)."""
self.list_seeds = [RNGs[i].seed_str for i in self.range_seeds]
"""List of seed values in string format."""
self.DIR_ACTIVE = ad
"""The full path to the active directory to store output. ex. C:\\...\\parentDir\\BayesFRET_{curr_date}\n\nCHANGE THIS IF FOLDER MOVED AFTER SIMULATION!"""
self.DIR_RESOURCES = rd
"""Current directory of the BayesFRET program.\n\nCHANGE THIS IF THE BAYESFRET FOLDER IS MOVED!"""
self.filenames = [ self.func_getActivePath( f"BayesFRET_data_sim_{self.RNGs[v].seed_str}_history.p" ) for v in self.range_seeds ]
"""The filenames of the RNG history pickle files."""
self.THEME = theme
"""The dark/light theme for icons: 'BayesFRET dark icon' or 'BayesFRET light icon'"""
self.Q = Q
"""The number of posterior quantiles to show in the last graph. Posterior quantilies demonstrate the sampling frequency of the simulation's FRET efficiency trace."""
self.burn_in = bi
"""Ignores the first percentage of results to hide outliers."""
self.rep_tht = rep_tht
"""Number of times to calculate `tht`: θ ~ Gamma( φ_θ, ψ_θ ) and other photoemission priors."""
self.rep_bm = rep_bm
"""Number of times to calculate `bm`: β ~ Dir( γ/K, ..., γ/K )."""
self.MG_L = MG_L
"""Length to repeat the Metropolis-Hastings algorithm."""
self.HMC_L = HMC_L
"""Length to run the Hamiltonian Monte Carlo algorithm."""
self.HMC_eps = HMC_eps
"""Leap size for the Hamiltonian Monte Carlo algorithm."""
self.menu_t3 = mt3
"""Topmost context menu button ("Status") to update status. `None` when exported."""
self.menu_run = mr
"""Second topmost context menu button ("Run") to update status. `None` when exported."""
self.tray = tray
"""Icon for system tray. `None` when exported."""
self.tray_state = ts
"""Second half of QIcon filename (Universal)."""
def get_samples(self, p: np.ndarray, v: np.int64):
"""
Categorical distribution for conformational states based on probabilities.
Args:
p: The probability array.
v: The version of the simulation. `v=-1` is strictly for synthetic data.
"""
ind = np.argsort(-1*p)
P = np.cumsum( np.sort(p)[::-1] )
return ind[ np.argmax( P[-1] * self.RNGs[v].rand1() <= P ) ]
def make_figure(self, title: str, tl: bool, pad=0):
"""
Start to make window for Figure.
Args:
title: Only for `self.show=True`.
tl: Tight layout or not.
pad: Padding of tight layout (only for Figure 5).
"""
if self.show:
fig = self.plt.figure( title, dpi=self.dpi, tight_layout=tl ) # NOTE: Do we need self.dpi??
if self.large: self.plt.get_current_fig_manager().window.showMaximized()
else: self.plt.get_current_fig_manager().resize( self.w, self.h )
else:
fig = self.plt.figure( title, dpi=self.dpi, tight_layout=tl, figsize=( self.w/self.dpi, self.h/self.dpi ) )
self.plt.get_current_fig_manager().window.setWindowIcon( self.func_getIcon( f"{self.THEME}.ico" ) )
if pad != 0:
self.plt.tight_layout( pad=pad )
self.figs.append(fig)
return fig
def func_getActivePath(self, fname: str):
"""Returns the full filepath of the active directory merged with the file `fname`."""
return os.path.join( self.DIR_ACTIVE, fname )
def func_getIcon(self, file: str):
"""
Shortcut to return formatted icon from the resources folder.
"""
return QIcon( os.path.join( self.DIR_RESOURCES, file ) )
def _updateStatus2(self, status: str, end: str):
"""
Updates the one-time status on the command line, context menu, and tray tooltip. DO NOT USE OUTSIDE OF SIMULATION.
"""
if "Done!" not in status:
dots = "."*(50 - len(status))
print(f"{status}{dots} ", end=end)
self.menu_run.setText( status )
self.tray.setToolTip( status )
else:
print(f"{status}", end=end)
self.menu_run.setText( self.menu_run.text() + ": Done!" )
self.tray.setToolTip( self.tray.toolTip() + ": Done!" )
def func_delForPickle(self):
"""
Remove objects that can't be pickled.
"""
del(self.TS)
del(self.menu_t3)
del(self.menu_run)
del(self.tray)
del(self.tray_state)
class Params:
"""
Stores and labels all the static parameters.
"""
i_skip = 1
"""Accepts sample on `n`th iteration when `n mod i_skip = 0`. `i_skip = 1` means no skipping."""
MG_a_D = 250
"""α^D for the proposed background emission multiplier for the donor dye in the MG algorithm: ρ^D_* = ρ^D_{n-1} [ Gamma( α^D, 1 ) / α^D ]."""
MG_a_A = 250
"""α^A for the proposed background emission multiplier for the acceptor dye in the MG algorithm: ρ^A_* = ρ^A_{n-1} [ Gamma( α^A, 1 ) / α^A ]."""
def __init__( self, It_D: np.ndarray[np.float64], It_A: np.ndarray[np.float64], T: np.int64, units_t: str, units_I: str,
dt: np.float64, dD: np.float64, cDD: np.float64, cAA: np.float64, qD: np.float64, qA: np.float64,
N: np.int64, K_lim: np.int64, alpha: np.float64, gamma: np.float64,
wi_D_prior_eta: np.ndarray[np.float64], wi_D_prior_zeta: np.ndarray[np.float64], wi_A_prior_eta: np.ndarray[np.float64], wi_A_prior_zeta: np.ndarray[np.float64],
rho_D_prior_phi: np.float64, rho_D_prior_psi: np.float64, rho_A_prior_phi: np.float64, rho_A_prior_psi: np.float64, tht_prior_phi: np.float64, tht_prior_psi: np.float64,
kap_D_prior_phi: np.float64, kap_D_prior_psi: np.float64, kap_A_prior_phi: np.float64, kap_A_prior_psi: np.float64, kap_Z_prior_phi: np.float64, kap_Z_prior_psi: np.float64 ):
self.It_D = It_D
"""Original data: Set of photon intensities of donor dye.\n\nSize: `T`"""
self.It_A = It_A
"""Original data: Set of photon intensities of acceptor dye.\n\nSize: `T`"""
self.T = T
"""Size of the dataset (`size(It_D) = size(It_A)`)."""
self.units_t = units_t
"""Unit of time for figures."""
self.units_I = units_I
"""Unit of intensity for figures."""
self.dt = dt
"""δt: Frame rate (a.k.a. measurement acquisition period, or the frequency of data) in seconds, regardless of the unit of time."""
self.dD = dD
"""δτ = δt (1-d): Exposure period, or how much time within the frame rate (δt/`dt`) is dedicated to capturing the intensity using the dead time (d)."""
self.cDD = cDD
"""Cross-talk proportion from donor dye to donor channel. `cDD + cDA = 1`"""
self.cDA = 1 - cDD
"""Cross-talk proportion from donor dye to acceptor channel. `cDD + cDA = 1`"""
self.cAA = cAA
"""Cross-talk proportion from acceptor dye to acceptor channel. `cAA + cAD = 1`"""
self.cAD = 1 - cAA
"""Cross-talk proportion from acceptor dye to donor channel. `cAA + cAD = 1`"""
self.qD = qD
"""Detector quantum efficiency (photodetection percentage) for the donor dye."""
self.qA = qA
"""Detector quantum efficiency (photodetection percentage) for the acceptor dye."""
self.N = N
"""Length (a.k.a. number of iterations) for each simulation."""
self.K_lim = K_lim
"""K: The weak limit to estimating the number of conformational states. Also contributes to the nonparametric hierarchical prior `bm`: β ~ Dir( γ/K, ..., γ/K )."""
self.alpha = alpha
"""Concentration parameter α for the conformational state probability prior `ps`: ~π ~ DP( α, β )."""
self.gamma = gamma
"""γ for the nonparametric hierarchical prior `bm`: β ~ Dir( γ/K, ..., γ/K )."""
self.wi_D_prior_eta = wi_D_prior_eta
"""Shape η^D for photo-state transition priors of the donor dye: ω^D ~ Beta( η^D, ζ^D ).\n\nSize 3"""
self.wi_D_prior_zeta = wi_D_prior_zeta
"""Scale ζ^D for photo-state transition priors of the donor dye: ω^D ~ Beta( η^D, ζ^D ).\n\nSize 3"""
self.wi_A_prior_eta = wi_A_prior_eta
"""Shape η^A for photo-state transition priors of the acceptor dye: ω^A ~ Beta( η^A, ζ^A ).\n\nSize 3"""
self.wi_A_prior_zeta = wi_A_prior_zeta
"""Scale ζ^A for photo-state transition priors of the acceptor dye: ω^A ~ Beta( η^A, ζ^A ).\n\nSize 3"""
self.rho_D_prior_phi = rho_D_prior_phi
"""φ^D_ρ in scaling factor of background emission rates for the donor dye: ρ^D ~ Gamma( φ^D_ρ, ψ^D_ρ / φ^D_ρ )."""
self.rho_D_prior_psi = rho_D_prior_psi
"""ψ^D_ρ in scaling factor of background emission rates for the donor dye: ρ^D ~ Gamma( φ^D_ρ, ψ^D_ρ / φ^D_ρ )."""
self.rho_A_prior_phi = rho_A_prior_phi
"""φ^A_ρ in scaling factor of background emission rates for the acceptor dye: ρ^A ~ Gamma( φ^A_ρ, ψ^A_ρ / φ^A_ρ )."""
self.rho_A_prior_psi = rho_A_prior_psi
"""ψ^A_ρ in scaling factor of background emission rates for the acceptor dye: ρ^A ~ Gamma( φ^A_ρ, ψ^A_ρ / φ^A_ρ )."""
self.tht_prior_phi = tht_prior_phi
"""Shape φ_θ for the photoemission multiplier: θ ~ Gamma( φ_θ, ψ_θ )."""
self.tht_prior_psi = tht_prior_psi
"""Scale ψ_θ for the photoemission multiplier: θ ~ Gamma( φ_θ, ψ_θ )."""
self.kap_D_prior_phi = kap_D_prior_phi
"""φ^D_κ in scaling factor of photoemission rates for the donor dye with FRET: κ^D ~ Gamma( φ^D_κ, ψ^D_κ / φ^D_κ )."""
self.kap_D_prior_psi = kap_D_prior_psi
"""ψ^D_κ in scaling factor of photoemission rates for the donor dye with FRET: κ^D ~ Gamma( φ^D_κ, ψ^D_κ / φ^D_κ )."""
self.kap_A_prior_phi = kap_A_prior_phi
"""φ^A_κ in scaling factor of photoemission rates for the acceptor dye with FRET: κ^A ~ Gamma( φ^A_κ, ψ^A_κ / φ^A_κ )."""
self.kap_A_prior_psi = kap_A_prior_psi
"""ψ^A_κ in scaling factor of photoemission rates for the acceptor dye with FRET: κ^A ~ Gamma( φ^A_κ, ψ^A_κ / φ^A_κ )."""
self.kap_Z_prior_phi = kap_Z_prior_phi
"""φ^Z_κ in scaling factor of photoemission rates for the donor dye without FRET: κ^Z ~ Gamma( φ^Z_κ, ψ^Z_κ / φ^Z_κ )."""
self.kap_Z_prior_psi = kap_Z_prior_psi
"""ψ^Z_κ in scaling factor of photoemission rates for the donor dye without FRET: κ^Z ~ Gamma( φ^Z_κ, ψ^Z_κ / φ^Z_κ )."""
class Sample:
"""
Calculates and stores the initial priors and states.
"""
n = 0
"""Current iteration in chain."""
rec: np.ndarray[np.float64] = repmat([0, np.finfo(float).tiny], 3, 1)
"""Current ratios to accept [i][0] / run [i][1] the HMC [0] + MG [1] + Flipper [2] algorithms."""
ksi_D: np.float64
"""ξ^D Current: Background photoemission rates for the donor dye."""
ksi_A: np.float64
"""ξ^A Current: Background photoemission rates for the acceptor dye."""
lam_D: np.ndarray[np.float64]
"""λ^D Current: Donor dye photoemission rates with FRET.\n\nSize: `K`"""
lam_A: np.ndarray[np.float64]
"""λ^A Current: Acceptor dye photoemission rates with FRET.\n\nSize: `K`"""
lam_Z: np.float64
"""λ^Z Current: Donor dye photoemission rate without FRET."""
eff: np.ndarray[np.float64]
"""E Current: Apparent FRET efficiencies of the `K` states.\n\nSize: `K`"""
eff_select: np.ndarray[np.float64]
"""E Selected: Apparent FRET efficiency of the unique states.\n\nSize: `K_set`"""
K_set: np.ndarray[np.int64]
"""set(K): The set of unique conformational states from `unique(sample.st)`. Filters `kap_A` and `kap_D` for updating."""
K_cnt: np.ndarray[np.intp]
"""count(K): The counts of the unique conformational states from `unique(sample.st, return_counts=True)`."""
K_loc: np.ndarray[np.intp]
"""location(K): The locations of the unique conformational states from `unique(sample.st, return_inverse=True)`. Filters `kap_A` and `kap_D` for `mu`."""
def __init__(self, params: Params, U: Universal, v: np.int64):
"""
Calculates and stores the initial priors and states.
Args:
v: Index of the current simulation.
"""
# states
self.st = np.ones( params.T, dtype = np.int64 )
"""s_n Current: Conformational states of the observed molecule throughout the experiment.\n\nSize: `T`"""
self.K_set, self.K_loc, self.K_cnt = np.unique( self.st, return_inverse = True, return_counts = True )
self.K_sz = self.K_set.size
"""size(K) Current: Number of unique conformational states."""
self.ft_D = np.ones( params.T, dtype = np.bool_ )
"""f_0^D Current: The photo-states (bright/dark) of the donor dye throughout the experiment.\n\nSize: `T`"""
self.ft_A = np.ones( params.T, dtype = np.bool_ )
"""f_0^A Current: The photo-states (bright/dark) of the acceptor dye throughout the experiment.\n\nSize: `T`"""
# transition probabilities
self.bm = params.gamma * np.ones(params.K_lim) / params.K_lim
"""Beta dist. Current: The nonparametric hierarchical prior.\n\nSize: `K`"""
self.pm = U.RNGs[v].dirrnd( params.alpha * np.tile( self.bm[0], (params.K_lim, params.K_lim) ) )
"""π Current: The transition matrix between K states.\n\nSize: `K*^2`"""
self.ps = U.RNGs[v].dirrnd( params.alpha * self.bm )
"""π* Current: The probability array that state K will occur in the initial state.\n\nSize: `K`"""
# photophysics
self.wi_D = U.RNGs[v].betarnd( params.wi_D_prior_eta, params.wi_D_prior_zeta )
"""ω^D Current: The transition probabilities of the photo-states for the donor dye where ω^D = {ω^D_0, ω^D_1, ω^D_*}."""
self.wi_A = U.RNGs[v].betarnd( params.wi_A_prior_eta, params.wi_A_prior_zeta )
"""ω^A Current: The transition probabilities of the photo-states for the acceptor dye where ω^A = {ω^A_0, ω^A_1, ω^A_*}."""
# emission rates + multipliers
self.tht = U.RNGs[v].gamrnd1( params.tht_prior_phi, params.tht_prior_psi / params.tht_prior_phi )
"""θ Current: The photoemission multiplier."""
self.rho_D = U.RNGs[v].gamrnd1( params.rho_D_prior_phi, params.rho_D_prior_psi / params.rho_D_prior_phi )
"""ρ^D Current: Scaling factor for background photoemission rates of the donor dye."""
self.rho_A = U.RNGs[v].gamrnd1( params.rho_A_prior_phi, params.rho_A_prior_psi / params.rho_A_prior_phi )
"""ρ^A Current: Scaling factor for background photoemission rates of the acceptor dye."""
self.kap_D = U.RNGs[v].gamrnd( params.kap_D_prior_phi, params.kap_D_prior_psi / params.kap_D_prior_phi, params.K_lim )
"""κ^D Current: Scaling factors for photoemission rates of the donor dye with FRET.\n\nSize: `K`"""
self.kap_A = U.RNGs[v].gamrnd( params.kap_A_prior_phi, params.kap_A_prior_psi / params.kap_A_prior_phi, params.K_lim )
"""κ^A Current: Scaling factors for photoemission rates of the acceptor dye with FRET.\n\nSize: `K`"""
self.kap_Z = U.RNGs[v].gamrnd1( params.kap_Z_prior_phi, params.kap_Z_prior_psi / params.kap_Z_prior_phi )
"""κ^Z Current: Scaling factor for photoemission rates of the donor dye without FRET."""
self.UPDATE_AUX()
def UPDATE_AUX(self):
"""
Update Auxiliary Variables
===
Calculate photoemission rates from priors.
Updates `ksi_D`, `ksi_A`, `lam_D`, `lam_A`, `lam_Z`, `eff`.
"""
self.ksi_D = self.tht * self.rho_D
self.ksi_A = self.tht * self.rho_A
self.lam_D = self.tht * self.kap_D
self.lam_A = self.tht * self.kap_A
self.lam_Z = self.tht * self.kap_Z
self.eff = self.kap_A / (self.kap_A + self.kap_D)
self.eff_select = self.eff[self.K_set]
class Chain_History:
"""
Keeps a numerical record of this simulation.
"""
runtime: str
"""String of simulation runtime."""
def __init__(self, params: Params, sample: Sample, seed_int: np.int64):
self.rec_ord = np.zeros((params.N+1, 4), dtype = np.float64)
"""Copy of cumulative ratios to accept/run HMC (1) + MG (2) + Flipper (3) algorithms by time $ (0)."""
self.seed_int = seed_int
"""The specific RNG seed (int) for the Generator class."""
self.K_sz = np.concatenate( ([sample.K_sz], np.zeros((params.N, ), dtype = np.int64)), dtype = np.int64, axis = 0 )
"""K Array: The number of conformational states throughout the simulation at iteration `n`.\n\nSize: `N+1`"""
# states
self.st = np.concatenate( ([sample.st], np.zeros((params.N, params.T), dtype = np.int64)), dtype = np.int64, axis = 0 )
"""s_t Array: Conformational states of the observed molecule throughout the experiment at iteration `n`.\n\nShape: `N+1, T`"""
K_set, K_loc, K_cnt = np.unique( self.st, return_inverse=True, return_counts=True )
self.K_set = [K_set]
"""
set(K) Array: The set of unique conformational states from `unique(st)` at iteration `n`. Filters `kap_A` and `kap_D` for updating.
Shape: List of `N` samples, each of size `self.K_sz[n]`.
"""
self.K_loc = [K_loc]
"""
location(K) Array: The locations of the unique conformational states from `unique(st, return_inverse=True)` at iteration `n`. Filters `kap_A` and `kap_D` for `mu`.
Shape: List of `N` samples, each of size `self.K_sz[n]`.
"""
self.K_cnt = [K_cnt]
"""
count(K) Array: The counts of the unique conformational states from `unique(st, return_counts=True)` at iteration `n`.
Shape: List of `N` samples, each of size `self.K_sz[n]`.
"""
self.ft_D = np.concatenate( ([sample.ft_D], np.zeros((params.N, params.T), dtype = np.bool_)), dtype = np.bool_, axis = 0 )
"""f_t^D Array: The photo-states (bright/dark) of the donor dye throughout the experiment at iteration `n`.\n\nShape: `N+1, T`"""
self.ft_A = np.concatenate( ([sample.ft_A], np.zeros((params.N, params.T), dtype = np.bool_)), dtype = np.bool_, axis = 0 )
"""f_t^A Array: The photo-states (bright/dark) of the acceptor dye throughout the experiment at iteration `n`.\n\nShape: `N+1, T`"""
self.eff = np.concatenate( ([sample.eff], np.empty((params.N, params.K_lim), dtype = np.float64)), dtype = np.float64, axis = 0 )
"""E Array: The apparent FRET efficiency at iteration `n`.\n\nShape: `N+1, K_lim`"""
self.eff_select = [self.eff[K_set]]
"""E Selected: Apparent FRET efficiency of the unique states at iteration `n`.\n\nShape: `N+1, K_set`"""
# photophysics
self.wi_D = np.concatenate( ([sample.wi_D], np.empty((params.N, 3), dtype = np.float64)), dtype = np.float64, axis = 0 )
"""ω^D = {ω^D_0, ω^D_1, ω^D_*} Array: The transition probabilities of the photo-states for the donor dye at iteration `n`.\n\nShape: `N+1, 3`"""
self.wi_A = np.concatenate( ([sample.wi_A], np.empty((params.N, 3), dtype = np.float64)), dtype = np.float64, axis = 0 )
"""ω^A = {ω^A_0, ω^A_1, ω^A_*} Array: The transition probabilities of the photo-states for the acceptor dye at iteration `n`.\n\nShape: `N+1, 3`"""
# transition probabilities
self.bm = np.concatenate( ([sample.bm], np.empty((params.N, params.K_lim), dtype = np.float64)), dtype = np.float64, axis = 0 )
"""Beta distribution Array: The nonparametric hierarchical prior at iteration `n`.\n\nShape: `N+1, K_lim`"""
self.pm = np.concatenate( ([sample.pm.flatten('F')], np.empty((params.N, params.K_lim**2), dtype = np.float64)), dtype = np.float64, axis = 0 )
"""π Array: The transition matrix between K states at iteration `n`.\n\nSize: `K^2`"""
self.ps = np.concatenate( ([sample.ps], np.empty((params.N, params.K_lim), dtype = np.float64)), dtype = np.float64, axis = 0 )
"""~π Array: The probability array that state K will occur in the initial state at iteration `n`.\n\nShape: `N+1, K_lim`"""
# emission rates + multipliers
self.tht = np.concatenate( ([sample.tht], np.empty((params.N, ), dtype = np.float64)), dtype = np.float64, axis = 0 )
"""θ Array: The photoemission multiplier at iteration `n`.\n\nSize: `N+1`"""
self.rho_D = np.concatenate( ([sample.rho_D], np.empty((params.N, ), dtype = np.float64)), dtype = np.float64, axis = 0 )
"""ρ^D Array: The scaling factor of background emission rates for the donor dye at iteration `n`.\n\nSize: `N+1`"""
self.rho_A = np.concatenate( ([sample.rho_A], np.empty((params.N, ), dtype = np.float64)), dtype = np.float64, axis = 0 )
"""ρ^A Array: The scaling factor of background emission rates for the acceptor dye at iteration `n`.\n\nSize: `N+1`"""
self.kap_D = np.concatenate( ([sample.kap_D], np.empty((params.N, params.K_lim), dtype = np.float64)), dtype = np.float64, axis = 0 )
"""κ^D Array: The scaling factor of photoemission rates for the donor dye with FRET at iteration `n`.\n\nShape: `N+1, K_lim`"""
self.kap_A = np.concatenate( ([sample.kap_A], np.empty((params.N, params.K_lim), dtype = np.float64)), dtype = np.float64, axis = 0 )
"""κ^A Array: The scaling factor of photoemission rates for the acceptor dye with FRET at iteration `n`.\n\nShape: `N+1, K_lim`"""
self.kap_Z = np.concatenate( ([sample.kap_Z], np.empty((params.N, ), dtype = np.float64)), dtype = np.float64, axis = 0 )
"""κ^Z Array: The scaling factor of photoemission rates for the donor dye without FRET at iteration `n`.\n\nSize: `N+1`"""
# aux
self.ksi_D = np.concatenate( ([sample.ksi_D], np.empty((params.N, ), dtype = np.float64)), dtype = np.float64, axis = 0 )
"""ξ^D Array: The background photoemission rates for the donor dye at iteration `n`.\n\nSize: `N+1`"""
self.ksi_A = np.concatenate( ([sample.ksi_A], np.empty((params.N, ), dtype = np.float64)), dtype = np.float64, axis = 0 )
"""ξ^A Array: The background photoemission rates for the acceptor dye at iteration `n`.\n\nSize: `N+1`"""
self.lam_D = np.concatenate( ([sample.lam_D], np.empty((params.N, params.K_lim), dtype = np.float64)), dtype = np.float64, axis = 0 )
"""λ^D Array: The donor dye photoemission rates with FRET at iteration `n`.\n\nShape: `N+1, K_lim`"""
self.lam_A = np.concatenate( ([sample.lam_A], np.empty((params.N, params.K_lim), dtype = np.float64)), dtype = np.float64, axis = 0 )
"""λ^A Array: The acceptor dye photoemission rates with FRET at iteration `n`.\n\nShape: `N+1, K_lim`"""
self.lam_Z = np.concatenate( ([sample.lam_Z], np.empty((params.N, ), dtype = np.float64)), dtype = np.float64, axis = 0 )
"""λ^Z Array: The donor dye photoemission rate without FRET at iteration `n`.\n\nSize: `N+1`"""