Code of paper Risk Conditioned Neural Motion Planning
@inproceedings{huang2021risksac,
title={Risk Conditioned Neural Motion Planning},
author={Huang, Xin and Feng, Meng and Jasour, Ashkan and Rosman, Guy and Williams, Brian C},
booktitle={2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)},
year={2021},
organization={IEEE}
}
-
Install the Conda environment: follow instructions for Miniconda from the website.
-
Install Conda environment.
cd <repo-location>
conda env create -f env.yml
conda activate risk_sac
pip install -e .
NOTE: If conda activate
does not work, replace with source activate
.
- Add the repo directory to PYTHONPATH.
Modify in RLKit submodule.
git submodule add [email protected]:cyrushx/rlkit.git external/rlkit
git submodule update --init --recursive
git submodule update --remote --merge
cd external/rlkit
pip install -e .
Mujoco_py is not required, if see mujoco_py error, comment out following lines in risk_deeprl/external/rlkit/rlkit/envs/wrappers/init.py
from rlkit.envs.wrappers.image_mujoco_env import ImageMujocoEnv
from rlkit.envs.wrappers.image_mujoco_env_with_obs import ImageMujocoWithObsEnv
python model/train_sac.py
python model/plot_learning_stats.py -i external/rlkit/data/YOUR_MODEL_PATH/
python model/train_risk_sac.py
python utils/plot_learning_stats.py -i external/rlkit/data/YOUR_MODEL_PATH/
python model/train_risk_conditioned_sac.py --delta 0.2 --risk-coeff 10
python utils/plot_learning_stats.py -i external/rlkit/data/YOUR_MODEL_PATH/
python external/rlkit/scripts/run_policy.py external/rlkit/data/YOUR_MODEL_PATH/params.pkl -v --baseline
python model/train_risk_conditioned_sac.py --env FlyTrapBig --risk-coeff 20 --epochs 1200
python external/rlkit/scripts/run_policy.py external/rlkit/data/YOUR_MODEL_PATH/params.pkl -v
python external/rlkit/scripts/run_policy.py external/rlkit/data/YOUR_MODEL_PATH/params.pkl -v --multiple-start
python model/train_risk_conditioned_sac.py --env TwoRooms --delta 0.1 --risk-coeff 20 --epochs 500 --dubins
python external/rlkit/scripts/run_policy.py external/rlkit/data/YOUR_MODEL_PATH/params.pkl -v