-
Notifications
You must be signed in to change notification settings - Fork 9
/
Copy pathmodel.py
158 lines (122 loc) · 5.91 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
# coding: utf-8
# created by deng on 2018-12-31
import torch
import torch.nn as nn
import numpy as np
class ExhaustiveModel(nn.Module):
def __init__(self, hidden_size, n_tags, max_region, embedding_url=None, bidirectional=True, lstm_layers=1,
n_embeddings=None, embedding_dim=None, freeze=False, char_feat_dim=100, n_chars = 100):
super().__init__()
if embedding_url:
self.embedding = nn.Embedding.from_pretrained(
embeddings=torch.Tensor(np.load(embedding_url)),
freeze=freeze
)
else:
self.embedding = nn.Embedding(n_embeddings, embedding_dim, padding_idx=0)
self.embedding_dim = self.embedding.embedding_dim
self.char_feat_dim = char_feat_dim
self.word_repr_dim = self.embedding_dim + self.char_feat_dim
self.char_repr = CharLSTM(
n_chars=n_chars,
embedding_size=char_feat_dim // 2,
hidden_size=char_feat_dim // 2,
) if char_feat_dim > 0 else None
self.dropout = nn.Dropout(p=0.5)
self.lstm = nn.LSTM(
input_size=self.word_repr_dim,
hidden_size=hidden_size,
bidirectional=bidirectional,
num_layers=lstm_layers,
batch_first=True
)
self.lstm_layers = lstm_layers
self.n_tags = n_tags
self.max_region = max_region
self.n_hidden = (1 + bidirectional) * hidden_size
self.region_clf = nn.Sequential(
nn.ReLU(),
nn.Linear(3 * self.n_hidden, n_tags),
# nn.Softmax(),
)
def forward(self, sentences, sentence_lengths, sentence_words, sentence_word_lengths,
sentence_word_indices):
# sentences (batch_size, max_sent_len)
# sentence_length (batch_size)
word_repr = self.embedding(sentences)
# word_feat shape: (batch_size, max_sent_len, embedding_dim)
# add character level feature
if self.char_feat_dim > 0:
# sentence_words (batch_size, *sent_len, max_word_len)
# sentence_word_lengths (batch_size, *sent_len)
# sentence_word_indices (batch_size, *sent_len, max_word_len)
# char level feature
char_feat = self.char_repr(sentence_words, sentence_word_lengths, sentence_word_indices)
# char_feat shape: (batch_size, max_sent_len, char_feat_dim)
# concatenate char level representation and word level one
word_repr = torch.cat([word_repr, char_feat], dim=-1)
# word_repr shape: (batch_size, max_sent_len, word_repr_dim)
# word_repr = self.dropout(word_repr)
packed = nn.utils.rnn.pack_padded_sequence(word_repr, sentence_lengths, batch_first=True)
out, (hn, _) = self.lstm(packed)
max_sent_len = sentences.shape[1]
unpacked, _ = nn.utils.rnn.pad_packed_sequence(out, total_length=max_sent_len, batch_first=True)
# unpacked (batch_size, max_sent_len, n_hidden)
unpacked = unpacked.transpose(0, 1)
# unpacked (max_sent_len, batch_size, n_hidden)
# shape of hn: (n_layers * n_directions, batch_size, hidden_size)
max_len = sentence_lengths[0]
regions = list()
for region_size in range(1, self.max_region + 1):
for start in range(0, max_len - region_size + 1):
end = start + region_size
regions.append(torch.cat([unpacked[start], torch.mean(unpacked[start:end], dim=0),
unpacked[end - 1]], dim=-1))
# shape of each region: (batch_size, 3 * n_hidden)
output = torch.stack([self.region_clf(region) for region in regions], dim=-1)
# shape of each region_clf output: (batch_size, n_classes)
# shape of output: (batch_size, n_classes, n_regions)
return output
class CharLSTM(nn.Module):
def __init__(self, n_chars, embedding_size, hidden_size, lstm_layers=1, bidirectional=True):
super().__init__()
self.n_chars = n_chars
self.embedding_size = embedding_size
self.n_hidden = hidden_size * (1 + bidirectional)
self.embedding = nn.Embedding(n_chars, embedding_size, padding_idx=0)
self.lstm = nn.LSTM(
input_size=embedding_size,
hidden_size=hidden_size,
bidirectional=bidirectional,
num_layers=lstm_layers,
batch_first=True,
)
def sent_forward(self, words, lengths, indices):
sent_len = words.shape[0]
# words shape: (sent_len, max_word_len)
embedded = self.embedding(words)
# in_data shape: (sent_len, max_word_len, embedding_dim)
packed = nn.utils.rnn.pack_padded_sequence(embedded, lengths, batch_first=True)
_, (hn, _) = self.lstm(packed)
# shape of hn: (n_layers * n_directions, sent_len, hidden_size)
hn = hn.permute(1, 0, 2).contiguous().view(sent_len, -1)
# shape of hn: (sent_len, n_layers * n_directions * hidden_size) = (sent_len, 2*hidden_size)
# shape of indices: (sent_len, max_word_len)
hn[indices] = hn # unsort hn
# unsorted = hn.new_empty(hn.size())
# unsorted.scatter_(dim=0, index=indices.unsqueeze(-1).expand_as(hn), src=hn)
return hn
def forward(self, sentence_words, sentence_word_lengths, sentence_word_indices):
# sentence_words [batch_size, *sent_len, max_word_len]
# sentence_word_lengths [batch_size, *sent_len]
# sentence_word_indices [batch_size, *sent_len, max_word_len]
batch_size = len(sentence_words)
batch_char_feat = torch.nn.utils.rnn.pad_sequence(
[self.sent_forward(sentence_words[i], sentence_word_lengths[i], sentence_word_indices[i])
for i in range(batch_size)], batch_first=True)
return batch_char_feat
# (batch_size, sent_len, 2 * hidden_size)
def main():
pass
if __name__ == '__main__':
main()