-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
35 lines (28 loc) · 1.31 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
import torch
from models.model_tools import train_model_, evaluate_model, prepare_dataset, plot_results
device = 'cuda' if torch.cuda.is_available() else 'cpu'
parameters_2 = {'order' : ['cd', 'optimized_filter'],'Nb' : 1000 , 'type' : 'QAM', 'M' : 64,
'ovs_factor' : 2, 'fiber_length' : 1000,
'Fs' : 80e9, 'wavelength' : 1553e-9,
'SNR' : 20,
'plot' : True
}
if __name__ == "__main__":
database_config = {
'host': 'localhost',
'port': 5432,
'dbname': 'OpticalData',
'user': '',
'password': ''
}
parameters = {
'order' : ['cd', 'eval'], 'Nb' : 1000 , 'type' : 'QAM', 'M' : 16,
'ovs_factor' : 2, 'fiber_length' : 4000,
'Fs' : 21.4e9, 'wavelength' : 1553e-9, 'SNR' : 15,
'plot' : True }
batch_size, lr = 2, 1e-5
min_epochs , max_epochs = 30, 120
model_name, version = "optimizedFilter" , 1.1
input_data, targets = prepare_dataset(database_config)
train_model_(input_data, targets, model_name, version, batch_size, min_epochs, max_epochs , lr)
evaluate_model(model_name, version, parameters, n_trials = 3000)