.. customcarditem::
:header: ํ์ดํ ์น(PyTorch)๋ก ๋ฅ๋ฌ๋ํ๊ธฐ: 60๋ถ๋ง์ ๋์ฅ๋ด๊ธฐ
:card_description: ๋์ ์์ค์์ PyTorch์ ํ
์ ๋ผ์ด๋ธ๋ฌ๋ฆฌ์ ์ ๊ฒฝ๋ง์ ์ดํดํฉ๋๋ค.
:image: _static/img/thumbnails/cropped/60-min-blitz.png
:link: beginner/deep_learning_60min_blitz.html
:tags: Getting-Started
.. customcarditem::
:header: ์์ ๋ก ๋ฐฐ์ฐ๋ ํ์ดํ ์น(PyTorch)
:card_description: ํํ ๋ฆฌ์ผ์ ํฌํจ๋ ์์ ๋ค๋ก PyTorch์ ๊ธฐ๋ณธ ๊ฐ๋
์ ์ดํดํฉ๋๋ค.
:image: _static/img/thumbnails/cropped/learning-pytorch-with-examples.png
:link: beginner/pytorch_with_examples.html
:tags: Getting-Started
.. customcarditem::
:header: What is torch.nn really?
:card_description: Use torch.nn to create and train a neural network.
:image: _static/img/thumbnails/cropped/torch-nn.png
:link: beginner/nn_tutorial.html
:tags: Getting-Started
.. customcarditem::
:header: TensorBoard๋ก ๋ชจ๋ธ, ๋ฐ์ดํฐ, ํ์ต ์๊ฐํํ๊ธฐ
:card_description: TensorBoard๋ก ๋ฐ์ดํฐ ๋ฐ ๋ชจ๋ธ ๊ต์ก์ ์๊ฐํํ๋ ๋ฐฉ๋ฒ์ ๋ฐฐ์๋๋ค.
:image: _static/img/thumbnails/cropped/visualizing-with-tensorboard.png
:link: intermediate/tensorboard_tutorial.html
:tags: Interpretability,Getting-Started,Tensorboard
.. customcarditem::
:header: TorchVision ๊ฐ์ฒด ๊ฒ์ถ ๋ฏธ์ธ์กฐ์ (Finetuning) ํํ ๋ฆฌ์ผ
:card_description: ์ด๋ฏธ ํ๋ จ๋ Mask R-CNN ๋ชจ๋ธ์ ๋ฏธ์ธ์กฐ์ ํฉ๋๋ค.
:image: _static/img/thumbnails/cropped/TorchVision-Object-Detection-Finetuning-Tutorial.png
:link: intermediate/torchvision_tutorial.html
:tags: Image/Video
.. customcarditem::
:header: ์ปดํจํฐ ๋น์ ์ ์ํ ์ ์ดํ์ต(TRANSFER LEARNING) ํํ ๋ฆฌ์ผ
:card_description: ์ ์ดํ์ต์ผ๋ก ์ด๋ฏธ์ง ๋ถ๋ฅ๋ฅผ ์ํ ํฉ์ฑ๊ณฑ ์ ๊ฒฝ๋ง์ ํ์ตํฉ๋๋ค.
:image: _static/img/thumbnails/cropped/Transfer-Learning-for-Computer-Vision-Tutorial.png
:link: beginner/transfer_learning_tutorial.html
:tags: Image/Video
.. customcarditem::
:header: ์ ๋์ ์์ ์์ฑ(Adversarial Example Generation)
:card_description: ๊ฐ์ฅ ๋ง์ด ์ฌ์ฉ๋๋ ๊ณต๊ฒฉ ๋ฐฉ๋ฒ ์ค ํ๋์ธ FGSM (Fast Gradient Sign Attack)์ ์ด์ฉํด MNIST ๋ถ๋ฅ๊ธฐ๋ฅผ ์์ด๋ ๋ฐฉ๋ฒ์ ๋ฐฐ์๋๋ค.
:image: _static/img/thumbnails/cropped/Adversarial-Example-Generation.png
:link: beginner/fgsm_tutorial.html
:tags: Image/Video
.. customcarditem::
:header: DCGAN Tutorial
:card_description: Train a generative adversarial network (GAN) to generate new celebrities.
:image: _static/img/thumbnails/cropped/DCGAN-Tutorial.png
:link: beginner/dcgan_faces_tutorial.html
:tags: Image/Video
.. customcarditem::
:header: torchaudio Tutorial
:card_description: Learn to load and preprocess data from a simple dataset with PyTorch's torchaudio library.
:image: _static/img/thumbnails/cropped/torchaudio-Tutorial.png
:link: beginner/audio_preprocessing_tutorial.html
:tags: Audio
.. customcarditem::
:header: nn.Transformer ์ TorchText ๋ก ์ํ์ค-ํฌ-์ํ์ค ๋ชจ๋ธ๋งํ๊ธฐ
:card_description: nn.Transformer ๋ชจ๋์ ์ฌ์ฉํ์ฌ ์ด๋ป๊ฒ ์ํ์ค-ํฌ-์ํ์ค(Seq-to-Seq) ๋ชจ๋ธ์ ํ์ตํ๋์ง ๋ฐฐ์๋๋ค.
:image: _static/img/thumbnails/cropped/Sequence-to-Sequence-Modeling-with-nnTransformer-andTorchText.png
:link: beginner/transformer_tutorial.html
:tags: Text
.. customcarditem::
:header: ๊ธฐ์ด๋ถํฐ ์์ํ๋ NLP: ๋ฌธ์-๋จ์ RNN์ผ๋ก ์ด๋ฆ ๋ถ๋ฅํ๊ธฐ
:card_description:
torchtext๋ฅผ ์ฌ์ฉํ์ง ์๊ณ ๊ธฐ๋ณธ์ ์ธ ๋ฌธ์-๋จ์ RNN์ ์ฌ์ฉํ์ฌ ๋จ์ด๋ฅผ ๋ถ๋ฅํ๋ ๋ชจ๋ธ์ ๊ธฐ์ด๋ถํฐ ๋ง๋ค๊ณ ํ์ตํฉ๋๋ค. ์ด 3๊ฐ๋ก ์ด๋ค์ง ํํ ๋ฆฌ์ผ ์๋ฆฌ์ฆ์ ์ฒซ๋ฒ์งธ ํธ์
๋๋ค.
:image: _static/img/thumbnails/cropped/NLP-From-Scratch-Classifying-Names-with-a-Character-Level-RNN.png
:link: intermediate/char_rnn_classification_tutorial
:tags: Text
.. customcarditem::
:header: ๊ธฐ์ด๋ถํฐ ์์ํ๋ NLP: ๋ฌธ์-๋จ์ RNN์ผ๋ก ์ด๋ฆ ์์ฑํ๊ธฐ
:card_description: ๋ฌธ์-๋จ์ RNN์ ์ฌ์ฉํ์ฌ ์ด๋ฆ์ ๋ถ๋ฅํด๋ดค์ผ๋, ์ด๋ฆ์ ์์ฑํ๋ ๋ฐฉ๋ฒ์ ํ์ตํฉ๋๋ค. ์ด 3๊ฐ๋ก ์ด๋ค์ง ํํ ๋ฆฌ์ผ ์๋ฆฌ์ฆ ์ค ๋๋ฒ์งธ ํธ์
๋๋ค.
:image: _static/img/thumbnails/cropped/NLP-From-Scratch-Generating-Names-with-a-Character-Level-RNN.png
:link: intermediate/char_rnn_generation_tutorial.html
:tags: Text
.. customcarditem::
:header: ๊ธฐ์ด๋ถํฐ ์์ํ๋ NLP: ์ํ์ค-ํฌ-์ํ์ค ๋คํธ์ํฌ์ ์ดํ
์
์ ์ด์ฉํ ๋ฒ์ญ
:card_description: โ๊ธฐ์ด๋ถํฐ ์์ํ๋ NLPโ์ ์ธ๋ฒ์งธ์ด์ ๋ง์ง๋ง ํธ์ผ๋ก, NLP ๋ชจ๋ธ๋ง ์์
์ ์ํ ๋ฐ์ดํฐ ์ ์ฒ๋ฆฌ์ ์ฌ์ฉํ ์์ฒด ํด๋์ค์ ํจ์๋ค์ ์์ฑํด๋ณด๊ฒ ์ต๋๋ค.
:image: _static/img/thumbnails/cropped/NLP-From-Scratch-Translation-with-a-Sequence-to-Sequence-Network-and-Attention.png
:link: intermediate/seq2seq_translation_tutorial.html
:tags: Text
.. customcarditem::
:header: Text Classification with Torchtext
:card_description: This is the third and final tutorial on doing โNLP From Scratchโ, where we write our own classes and functions to preprocess the data to do our NLP modeling tasks.
:image: _static/img/thumbnails/cropped/Text-Classification-with-TorchText.png
:link: beginner/text_sentiment_ngrams_tutorial.html
:tags: Text
.. customcarditem::
:header: TorchText๋ก ์ธ์ด ๋ฒ์ญํ๊ธฐ
:card_description: ์์ด์ ๋
์ด๊ฐ ํฌํจ๋ ์ ์๋ ค์ง ๋ฐ์ดํฐ์
์ torchtext๋ฅผ ์ฌ์ฉํ์ฌ ์ ์ฒ๋ฆฌํ ๋ค, ์ํ์ค-ํฌ-์ํ์ค(Seq-to-Seq) ๋ชจ๋ธ์ ์ฌ์ฉํ์ฌ ํ์ตํฉ๋๋ค.
:image: _static/img/thumbnails/cropped/Language-Translation-with-TorchText.png
:link: beginner/torchtext_translation_tutorial.html
:tags: Text
.. customcarditem::
:header: ๊ฐํ ํ์ต(DQN) ํํ ๋ฆฌ์ผ
:card_description: PyTorch๋ฅผ ์ฌ์ฉํ์ฌ OpenAI Gym์ CartPole-v0 ํ์คํฌ์์ DQN(Deep Q Learning) ์์ด์ ํธ๋ฅผ ํ์ตํ๋ ๋ฐฉ๋ฒ์ ์ดํด๋ด
๋๋ค.
:image: _static/img/cartpole.gif
:link: intermediate/reinforcement_q_learning.html
:tags: Reinforcement-Learning
.. customcarditem::
:header: Flask๋ฅผ ์ฌ์ฉํ์ฌ Python์์ PyTorch๋ฅผ REST API๋ก ๋ฐฐํฌํ๊ธฐ
:card_description: Flask๋ฅผ ์ฌ์ฉํ์ฌ PyTorch ๋ชจ๋ธ์ ๋ฐฐํฌํ๊ณ , ๋ฏธ๋ฆฌ ํ์ต๋ DenseNet 121 ๋ชจ๋ธ์ ์์ ๋ก ํ์ฉํ์ฌ ๋ชจ๋ธ ์ถ๋ก (inference)์ ์ํ REST API๋ฅผ ๋ง๋ค์ด๋ณด๊ฒ ์ต๋๋ค.
:image: _static/img/thumbnails/cropped/Deploying-PyTorch-in-Python-via-a-REST-API-with-Flask.png
:link: intermediate/flask_rest_api_tutorial.html
:tags: Production
.. customcarditem::
:header: TorchScript ์๊ฐ
:card_description: C++๊ณผ ๊ฐ์ ๊ณ ์ฑ๋ฅ ํ๊ฒฝ์์ ์คํํ ์ ์๋๋ก (nn.Module์ ํ์ ํด๋์ค์ธ) PyTorch ๋ชจ๋ธ์ ์ค๊ฐ ํํ(intermediate representation)์ ์ ๊ณตํ๋ TorchScript๋ฅผ ์๊ฐํฉ๋๋ค.
:image: _static/img/thumbnails/cropped/Introduction-to-TorchScript.png
:link: beginner/Intro_to_TorchScript_tutorial.html
:tags: Production
.. customcarditem::
:header: C++์์ TorchScript ๋ชจ๋ธ ๋ก๋ฉํ๊ธฐ
:card_description: PyTorch๊ฐ ์ด๋ป๊ฒ ๊ธฐ์กด์ Python ๋ชจ๋ธ์ ์ง๋ ฌํ๋ ํํ์ผ๋ก ๋ณํํ์ฌ Python ์์กด์ฑ ์์ด ์์ํ๊ฒ C++์์ ๋ถ๋ฌ์ฌ ์ ์๋์ง ๋ฐฐ์๋๋ค.
:image: _static/img/thumbnails/cropped/Loading-a-TorchScript-Model-in-Cpp.png
:link: advanced/cpp_export.html
:tags: Production
.. customcarditem::
:header: (optional) Exporting a Model from PyTorch to ONNX and Running it using ONNX Runtime
:card_description: Convert a model defined in PyTorch into the ONNX format and then run it with ONNX Runtime.
:image: _static/img/thumbnails/cropped/optional-Exporting-a-Model-from-PyTorch-to-ONNX-and-Running-it-using-ONNX-Runtime.png
:link: advanced/super_resolution_with_onnxruntime.html
:tags: Production
.. customcarditem::
:header: (experimental) Introduction to Named Tensors in PyTorch
:card_description: Learn how to use PyTorch to train a Deep Q Learning (DQN) agent on the CartPole-v0 task from the OpenAI Gym.
:image: _static/img/thumbnails/cropped/experimental-Introduction-to-Named-Tensors-in-PyTorch.png
:link: intermediate/memory_format_tutorial.html
:tags: Frontend-APIs,Named-Tensor,Best-Practice
.. customcarditem::
:header: (experimental) Channels Last Memory Format in PyTorch
:card_description: Get an overview of Channels Last memory format and understand how it is used to order NCHW tensors in memory preserving dimensions.
:image: _static/img/thumbnails/cropped/experimental-Channels-Last-Memory-Format-in-PyTorch.png
:link: intermediate/memory_format_tutorial.html
:tags: Memory-Format,Best-Practice
.. customcarditem::
:header: Using the PyTorch C++ Frontend
:card_description: Walk through an end-to-end example of training a model with the C++ frontend by training a DCGAN โ a kind of generative model โ to generate images of MNIST digits.
:image: _static/img/thumbnails/cropped/Using-the-PyTorch-Cpp-Frontend.png
:link: advanced/cpp_frontend.html
:tags: Frontend-APIs,C++
.. customcarditem::
:header: Custom C++ and CUDA Extensions
:card_description: Create a neural network layer with no parameters using numpy. Then use scipy to create a neural network layer that has learnable weights.
:image: _static/img/thumbnails/cropped/Custom-Cpp-and-CUDA-Extensions.png
:link: advanced/cpp_extension.html
:tags: Frontend-APIs,C++,CUDA
.. customcarditem::
:header: Extending TorchScript with Custom C++ Operators
:card_description: Implement a custom TorchScript operator in C++, how to build it into a shared library, how to use it in Python to define TorchScript models and lastly how to load it into a C++ application for inference workloads.
:image: _static/img/thumbnails/cropped/Extending-TorchScript-with-Custom-Cpp-Operators.png
:link: advanced/torch_script_custom_ops.html
:tags: Frontend-APIs,TorchScript,C++
.. customcarditem::
:header: Extending TorchScript with Custom C++ Classes
:card_description: This is a continuation of the custom operator tutorial, and introduces the API weโve built for binding C++ classes into TorchScript and Python simultaneously.
:image: _static/img/thumbnails/cropped/Extending-TorchScript-with-Custom-Cpp-Classes.png
:link: advanced/torch_script_custom_classes.html
:tags: Frontend-APIs,TorchScript,C++
.. customcarditem::
:header: Autograd in C++ Frontend
:card_description: The autograd package helps build flexible and dynamic nerural netorks. In this tutorial, exploreseveral examples of doing autograd in PyTorch C++ frontend
:image: _static/img/thumbnails/cropped/Autograd-in-Cpp-Frontend.png
:link: advanced/cpp_autograd.html
:tags: Frontend-APIs,C++
.. customcarditem::
:header: Pruning Tutorial
:card_description: Learn how to use torch.nn.utils.prune to sparsify your neural networks, and how to extend it to implement your own custom pruning technique.
:image: _static/img/thumbnails/cropped/Pruning-Tutorial.png
:link: intermediate/pruning_tutorial.html
:tags: Model-Optimization,Best-Practice
.. customcarditem::
:header: (experimental) Dynamic Quantization on an LSTM Word Language Model
:card_description: Apply dynamic quantization, the easiest form of quantization, to a LSTM-based next word prediction model.
:image: _static/img/thumbnails/cropped/experimental-Dynamic-Quantization-on-an-LSTM-Word-Language-Model.png
:link: advanced/dynamic_quantization_tutorial.html
:tags: Text,Quantization,Model-Optimization
.. customcarditem::
:header: (experimental) Dynamic Quantization on BERT
:card_description: Apply the dynamic quantization on a BERT (Bidirectional Embedding Representations from Transformers) model.
:image: _static/img/thumbnails/cropped/experimental-Dynamic-Quantization-on-BERT.png
:link: intermediate/dynamic_quantization_bert_tutorial.html
:tags: Text,Quantization,Model-Optimization
.. customcarditem::
:header: (experimental) Static Quantization with Eager Mode in PyTorch
:card_description: Learn techniques to impove a model's accuracy = post-training static quantization, per-channel quantization, and quantization-aware training.
:image: _static/img/thumbnails/cropped/experimental-Static-Quantization-with-Eager-Mode-in-PyTorch.png
:link: advanced/static_quantization_tutorial.html
:tags: Image/Video,Quantization,Model-Optimization
.. customcarditem::
:header: (experimental) Quantized Transfer Learning for Computer Vision Tutorial
:card_description: Learn techniques to impove a model's accuracy - post-training static quantization, per-channel quantization, and quantization-aware training.
:image: _static/img/thumbnails/cropped/experimental-Quantized-Transfer-Learning-for-Computer-Vision-Tutorial.png
:link: advanced/static_quantization_tutorial.html
:tags: Image/Video,Quantization,Model-Optimization
.. customcarditem::
:header: Single-Machine Model Parallel Best Practices
:card_description: Learn how to implement model parallel, a distributed training technique which splits a single model onto different GPUs, rather than replicating the entire model on each GPU
:image: _static/img/thumbnails/cropped/Model-Parallel-Best-Practices.png
:link: intermediate/model_parallel_tutorial.html
:tags: Parallel-and-Distributed-Training
.. customcarditem::
:header: Getting Started with Distributed Data Parallel
:card_description: Learn the basics of when to use distributed data paralle versus data parallel and work through an example to set it up.
:image: _static/img/thumbnails/cropped/Getting-Started-with-Distributed-Data-Parallel.png
:link: intermediate/ddp_tutorial.html
:tags: Parallel-and-Distributed-Training
.. customcarditem::
:header: PyTorch๋ก ๋ถ์ฐ ์ดํ๋ฆฌ์ผ์ด์
๊ฐ๋ฐํ๊ธฐ
:card_description: PyTorch์ ๋ถ์ฐ ํจํค์ง๋ฅผ ์ค์ ํ๊ณ , ์๋ก ๋ค๋ฅธ ํต์ ์ ๋ต์ ์ฌ์ฉํ๊ณ , ๋ด๋ถ๋ฅผ ์ดํด๋ด
๋๋ค.
:image: _static/img/thumbnails/cropped/Writing-Distributed-Applications-with-PyTorch.png
:link: intermediate/dist_tuto.html
:tags: Parallel-and-Distributed-Training
.. customcarditem::
:header: Getting Started with Distributed RPC Framework
:card_description: Learn how to build distributed training using the torch.distributed.rpc package.
:image: _static/img/thumbnails/cropped/Getting Started with Distributed-RPC-Framework.png
:link: intermediate/rpc_tutorial.html
:tags: Parallel-and-Distributed-Training
.. customcarditem::
:header: (advanced) PyTorch 1.0 Distributed Trainer with Amazon AWS
:card_description: Set up the distributed package of PyTorch, use the different communication strategies, and go over some the internals of the package.
:image: _static/img/thumbnails/cropped/advanced-PyTorch-1point0-Distributed-Trainer-with-Amazon-AWS.png
:link: beginner/aws_distributed_training_tutorial.html
:tags: Parallel-and-Distributed-Training
.. customcarditem::
:header: Implementing a Parameter Server Using Distributed RPC Framework
:card_description: Walk through a through a simple example of implementing a parameter server using PyTorchโs Distributed RPC framework.
:image: _static/img/thumbnails/cropped/Implementing-a-Parameter-Server-Using-Distributed-RPC-Framework.png
:link: intermediate/rpc_param_server_tutorial.html
:tags: Parallel-and-Distributed-Training