@@ -467,7 +467,7 @@ mlflow.log_artifact("model")
467
467
#### MLflow UI
468
468
469
469
Visit the MLflow UI to interact with your flow run, and your artifact. You can do this by running
470
- ` mlflow ui ` in your terminal and then navigate to http://localhost:5000 in your browser.
470
+ ` mlflow ui ` in your terminal and then navigate to ` http://localhost:5000 ` in your browser.
471
471
472
472
![ MLflow ui] ( /_assets/img/ml-timeseries-primer/mlflow-experiment.png ) {width=480px}
473
473
@@ -627,9 +627,9 @@ make it a valuable asset in the realm of time series modeling and anomaly detect
627
627
628
628
[ CrateDB MLflow examples ] : https://github.com/crate-workbench/mlflow-cratedb/tree/main/examples
629
629
[ CrateDB MLflow handbook ] : https://github.com/crate-workbench/mlflow-cratedb/blob/main/docs/handbook.md
630
- [ database VIEWs ] : https:// crate.io/docs/crate/ reference/en/latest/general/ ddl/ views.html
630
+ [ database VIEWs ] : inv: crate- reference# ddl- views
631
631
[ DVC (Data Version Control) ] : https://dvc.org/
632
- [ dynamic object columns ] : https://crate.io /blog/handling-dynamic-objects-in-cratedb
632
+ [ dynamic object columns ] : https://cratedb.com /blog/handling-dynamic-objects-in-cratedb
633
633
[ ETS model ] : https://www.statsmodels.org/dev/examples/notebooks/generated/ets.html
634
634
[ Kolmogorov-Smirnov test ] : https://en.wikipedia.org/wiki/Kolmogorov%E2%80%93Smirnov_test
635
635
[ Kullback–Leibler Divergence ] : https://en.wikipedia.org/wiki/Kullback%E2%80%93Leibler_divergence
@@ -640,11 +640,11 @@ make it a valuable asset in the realm of time series modeling and anomaly detect
640
640
[ MLflow documentation ] : https://mlflow.org/docs/latest/index.html
641
641
[ MLOps ] : https://en.wikipedia.org/wiki/MLOps
642
642
[ ml-timeseries-blog-part-1 ] : https://cratedb.com/blog/introduction-to-time-series-modeling-with-cratedb-machine-learning-time-series-data
643
- [ OBJECT data type ] : https:// crate.io/docs/crate/reference/en/latest/general/ddl/data-types.html# object
644
- [ Object column policy ] : https:// crate.io/docs/crate/reference/en/latest/general/ddl/data-types.html# object-column-policy
643
+ [ OBJECT data type ] : inv: crate-reference#type- object
644
+ [ Object column policy ] : inv: crate-reference#type- object-column-policy
645
645
[ Random Cut Forest ] : https://docs.aws.amazon.com/sagemaker/latest/dg/randomcutforest.html
646
- [ Shard allocation filtering ] : https:// crate.io/docs/crate/reference/en/latest/general/ddl/shard-allocation.html
646
+ [ Shard allocation filtering ] : inv: crate-reference#ddl_shard_allocation
647
647
[ simulating live model deployment ] : https://opensource.salesforce.com/Merlion/v1.0.0/examples/anomaly/1_AnomalyFeatures.html#Simulating-Live-Model-Deployment
648
- [ time partitioning ] : https:// crate.io/docs/crate/ reference/en/latest/general/ddl/ partitioned-tables.html
648
+ [ time partitioning ] : inv: crate- reference# partitioned-tables
649
649
[ Time Series Analysis in Python – A Comprehensive Guide with Examples ] : https://www.machinelearningplus.com/time-series/time-series-analysis-python/
650
- [ window function ] : https:// crate.io/docs/crate/ reference/en/latest/general/builtins/ window-functions.html
650
+ [ window function ] : inv: crate- reference# window-functions
0 commit comments