-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathTetris.py
262 lines (200 loc) · 7.42 KB
/
Tetris.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
import numpy
import random
import copy
import matplotlib.pyplot as plt
import imageio
class Figure:
x = 0
y = 0
#liste des 6 différentes figures et leur rotation
figures = [
[[1, 5, 9, 13], [4, 5, 6, 7]],
[[4, 5, 9, 10], [2, 6, 5, 9]],
[[6, 7, 9, 10], [1, 5, 6, 10]],
[[1, 2, 5, 9], [0, 4, 5, 6], [1, 5, 9, 8], [4, 5, 6, 10]],
[[1, 2, 6, 10], [5, 6, 7, 9], [2, 6, 10, 11], [3, 5, 6, 7]],
[[1, 4, 5, 6], [1, 4, 5, 9], [4, 5, 6, 9], [1, 5, 6, 9]],
[[1, 2, 5, 6]],
]
def __init__(self, x, y, type):
self.x = x #position de la pièce sur la largeur du jeu
self.y = y #position de la pièce sur la longueur du jeu
self.type = type #type de la pièce entre 1 et 6
self.rotation = 0 #rotatio de la pièce
#séléction de la pièce (type et rotation) dans la liste figures
def image(self):
return self.figures[self.type][self.rotation]
#méthode pour faire pivoter la pièce
def rotate(self,k):
self.rotation = (self.rotation + k) % len(self.figures[self.type])
class Tetris:
def __init__(self, height, width): #initialisation du jeu
self.score = 0 #score du jeu
self.state = "start" #état du jeu (gameover si le jeu est fini)
self.field = [] # grille de jeu
self.height = 0 #hauteur du jeu
self.width = 0 #largeur du jeu
self.x = 100
self.y = 60
self.figure = None
self.height = height
self.width = width
self.field = []
self.score = 0
self.state = "start"
for i in range(height): # creation de la grille de taille height x width
new_line = []
for j in range(width):
new_line.append(0)
self.field.append(new_line)
def new_figure(self,type,x,y):
self.figure = Figure(x, y,type) #introduction d'une nouvelle figure type en (x,y)
def intersects(self): #check if the currently flying figure intersecting with something fixed on the field.
intersection = False
for i in range(4):
for j in range(4):
if i * 4 + j in self.figure.image():
if i + self.figure.y > self.height - 1 or \
j + self.figure.x > self.width - 1 or \
j + self.figure.x < 0 or \
self.field[i + self.figure.y][j + self.figure.x] > 0:
intersection = True
return intersection
def break_lines(self): #checking and detroying full lines
lines = 0
for i in range(1, self.height):
zeros = 0
for j in range(self.width):
if self.field[i][j] == 0:
zeros += 1
if zeros == 0:
lines += 1
for i1 in range(i, 1, -1):
for j in range(self.width):
self.field[i1][j] = self.field[i1 - 1][j]
self.score += lines ** 2
def go_space(self,color): #descend la pièce jusqu'en bas
while not self.intersects():
self.figure.y += 1
self.figure.y -= 1
self.freeze(color)
def freeze(self,color): #If it moves down and intersects, then this means we have reached the bottom, so we need to “freeze” the figure on our field:
for i in range(4):
for j in range(4):
if i * 4 + j in self.figure.image():
self.field[i + self.figure.y][j + self.figure.x] = color
self.break_lines()
def go_side(self, dx): #decale la pièce de dx (gauche si dx<0 droite sinon)
old_x = self.figure.x
self.figure.x += dx
if self.intersects():
self.figure.x = old_x
def rotate(self,k):
old_rotation = self.figure.rotation
self.figure.rotate(k)
if self.intersects():
self.figure.rotation = old_rotation
#Features du jeu
#retourne la taille des 10 colonnes du jeu
def column_height(field): #from top to bottom
h=[]
for j in range(10):
column=[field[i][j] for i in range(20)]
height=0
while height<20 and column[height]==0 :
height+=1
h.append(20-height)
return(h)
#retourne la taille maximale des colonnes du jeu
def maximum_height(field):
return(max(column_height(field)))
#retourne la différence en valeur absolue de la taille d'une colonne avec celle de sa voisine
def column_difference(field):# absolute difference between adjacent columns
df=[]
h=column_height(field)
for j in range(9):
df.append(abs(h[j+1]-h[j]))
return(df)
#compte le nombre de troux inaccessibles du jeu
def holes(field):
L=0
h=column_height(field)
for j in range(10):
for i in range(20-h[j],20):
if field[i][j]==0:
L+=1
return(L)
#Evalue la configuration de la grille en pondérant les features par le vecteur W de taille 21
def evaluate(W, field):
#W=[w1, ..., w21] vector of parameters to tune
h=column_height(field)
dh=column_difference(field)
L=holes(field)
H=maximum_height(field)
S1,S2,S3,S4=0,0,0,0
for k in range (len(h)):
S1+=h[k]*W[k]
for k in range (len(dh)):
S2+=dh[k]*W[10+k]
S3=W[19]*L
S4=W[20]*H
return(S1+S2+S3+S4)
#pour une configuration et une nouvelle piece donné, retourne le meilleur coup au sens de evaluate()
def evaluate_best_move(W,field,type,color):
L=[]
score=[]
for k in range (4):
for col in range (-5,10):
game_copy=Tetris(20,10)
game_copy.field=copy.deepcopy(field)
game_copy.new_figure(type,3,0)
game_copy.rotate(k)
game_copy.go_side(col)
if game_copy.intersects()==False:
game_copy.go_space(color)
score.append(evaluate(W,game_copy.field))
L.append([col,k])
if len(L)>0:
best_move=score.index(min(score))
return(L[best_move])
else :
return([0,0])
#simule une partie
def simulation(W):
game = Tetris(20, 10)
while game.state!="gameover":
fig=random.randint(0,6)
color=1
game.new_figure(fig,3,0)
col, rot = evaluate_best_move(W,game.field,fig,color)
game.rotate(rot)
game.go_side(col)
if game.intersects():
game.state="gameover"
else:
game.go_space(color)
return(game.score)
def simulation_gif(W): #Pas encore optimisé pour les pièces qui arrivent en haut
L=[]
game = Tetris(20, 10)
while game.state!="gameover":
fig=random.randint(0,6)
color=random.randint(1,4)
game.new_figure(fig,3,0)
if game.intersects():
game.state="gameover"
col, rot = evaluate_best_move(W,game.field,fig,color)
game.rotate(rot)
game.go_side(col)
game.go_space(color)
fig, ax = plt.subplots()
ax.set_title(str(game.score))
ax.matshow(game.field, cmap='Blues')
L.append(fig)
return(L)
def get_gif (L): #L: list of figures as returned by simulation_gif
with imageio.get_writer('tetris.gif', mode='I') as writer:
for fig in L:
fig.canvas.draw()
image = imageio.core.asarray(fig.canvas.renderer.buffer_rgba())
writer.append_data(image)