|
| 1 | +{ |
| 2 | + "cells": [ |
| 3 | + { |
| 4 | + "cell_type": "markdown", |
| 5 | + "id": "060c8aab", |
| 6 | + "metadata": {}, |
| 7 | + "source": [ |
| 8 | + "# Get Jobs" |
| 9 | + ] |
| 10 | + }, |
| 11 | + { |
| 12 | + "cell_type": "markdown", |
| 13 | + "id": "06976a85", |
| 14 | + "metadata": {}, |
| 15 | + "source": [ |
| 16 | + "[AutomationAPI Documentation](https://documents.bmc.com/supportu/API/Monthly/en-US/Documentation/API_Services_DeployService.htm#deploy3)\n", |
| 17 | + "\n", |
| 18 | + "\n", |
| 19 | + "The get_jobs() method in the Control-M Python Client provides an easy way to retrieve job and folder definitions from the Control-M Server. It wraps the deploy jobs::get AAPI command and deserializes the resulting JSON into Python objects, allowing users to fetch and work with jobs and folders in a way that mirrors the state before deployment.\n", |
| 20 | + "\n", |
| 21 | + "This guide demonstrates how to use get_jobs() to fetch jobs from the Control-M server." |
| 22 | + ] |
| 23 | + }, |
| 24 | + { |
| 25 | + "cell_type": "code", |
| 26 | + "execution_count": 2, |
| 27 | + "id": "93e45a7e", |
| 28 | + "metadata": {}, |
| 29 | + "outputs": [ |
| 30 | + { |
| 31 | + "name": "stdout", |
| 32 | + "output_type": "stream", |
| 33 | + "text": [ |
| 34 | + "{\n", |
| 35 | + " \"Folder_Sanity_1\": {\n", |
| 36 | + " \"Type\": \"Folder\",\n", |
| 37 | + " \"ControlmServer\": \"workbench\",\n", |
| 38 | + " \"LoadForecasts\": {\n", |
| 39 | + " \"Type\": \"Job:Databricks\",\n", |
| 40 | + " \"RunAs\": \"workbench\",\n", |
| 41 | + " \"RunAsDummy\": true,\n", |
| 42 | + " \"ConnectionProfile\": \"DATABRICKS\",\n", |
| 43 | + " \"Databricks Job ID\": \"991955986358417\",\n", |
| 44 | + " \"Parameters\": \"\\\"params\\\":{}\",\n", |
| 45 | + " \"Idempotency Token\": \"tokeni_%%ORDERID\"\n", |
| 46 | + " },\n", |
| 47 | + " \"RunAs\": \"workbench\"\n", |
| 48 | + " },\n", |
| 49 | + " \"Folder_Sanity_2\": {\n", |
| 50 | + " \"Type\": \"Folder\",\n", |
| 51 | + " \"ControlmServer\": \"workbench\",\n", |
| 52 | + " \"InventoryForecastModel\": {\n", |
| 53 | + " \"Type\": \"Job:AWS SageMaker\",\n", |
| 54 | + " \"RerunLimit\": {\n", |
| 55 | + " \"Times\": \"5\"\n", |
| 56 | + " },\n", |
| 57 | + " \"RunAs\": \"workbench\",\n", |
| 58 | + " \"RunAsDummy\": true,\n", |
| 59 | + " \"ConnectionProfile\": \"SAGEMAKER\",\n", |
| 60 | + " \"Pipeline Name\": \"InferencePipeline\",\n", |
| 61 | + " \"Idempotency Token\": \"Token_ControlM_for_SageMaker%%ORDERID\",\n", |
| 62 | + " \"Add Parameters\": \"checked\",\n", |
| 63 | + " \"Parameters\": \"{\\\"Name\\\":\\\"input_file\\\", \\\"Value\\\": \\\"file\\\"}\",\n", |
| 64 | + " \"Retry Pipeline Execution\": \"unchecked\"\n", |
| 65 | + " },\n", |
| 66 | + " \"RunAs\": \"workbench\"\n", |
| 67 | + " }\n", |
| 68 | + "}\n" |
| 69 | + ] |
| 70 | + } |
| 71 | + ], |
| 72 | + "source": [ |
| 73 | + "from ctm_python_client.core.workflow import Workflow, WorkflowDefaults\n", |
| 74 | + "from ctm_python_client.core.comm import Environment\n", |
| 75 | + "from aapi import *\n", |
| 76 | + "\n", |
| 77 | + "# Step 1: Define the environment (Control-M Workbench in this case)\n", |
| 78 | + "env = Environment.create_workbench('workbench')\n", |
| 79 | + "\n", |
| 80 | + "# Step 2: Define your workflow with jobs and folders\n", |
| 81 | + "workflow = Workflow(env, WorkflowDefaults(run_as='workbench'))\n", |
| 82 | + "workflow.clear_all()\n", |
| 83 | + "run_as_dummy = True\n", |
| 84 | + "\n", |
| 85 | + "# Define jobs\n", |
| 86 | + "databricksLoad = JobDatabricks(\n", |
| 87 | + " 'LoadForecasts',\n", |
| 88 | + " connection_profile='DATABRICKS',\n", |
| 89 | + " databricks_job_id='991955986358417',\n", |
| 90 | + " parameters='\"params\":{}',\n", |
| 91 | + " idempotency_token='tokeni_%%ORDERID',\n", |
| 92 | + " run_as_dummy=run_as_dummy\n", |
| 93 | + ")\n", |
| 94 | + "\n", |
| 95 | + "sagemaker_job = JobAwsSageMaker(\n", |
| 96 | + " 'InventoryForecastModel',\n", |
| 97 | + " connection_profile='SAGEMAKER',\n", |
| 98 | + " pipeline_name='InferencePipeline',\n", |
| 99 | + " idempotency_token='Token_ControlM_for_SageMaker%%ORDERID',\n", |
| 100 | + " add_parameters='checked',\n", |
| 101 | + " parameters='{\"Name\":\"input_file\", \"Value\": \"file\"}',\n", |
| 102 | + " run_as_dummy=run_as_dummy,\n", |
| 103 | + " retry_pipeline_execution='unchecked',\n", |
| 104 | + " rerun_limit=Job.RerunLimit(times='5')\n", |
| 105 | + ")\n", |
| 106 | + "\n", |
| 107 | + "# Define folders\n", |
| 108 | + "folder1 = Folder('Folder_Sanity_1', controlm_server='workbench', job_list=[databricksLoad])\n", |
| 109 | + "folder2 = Folder('Folder_Sanity_2', controlm_server='workbench', job_list=[sagemaker_job])\n", |
| 110 | + "\n", |
| 111 | + "workflow.add(folder1)\n", |
| 112 | + "workflow.add(folder2)\n", |
| 113 | + "\n", |
| 114 | + "# Step 3: Deploy workflow\n", |
| 115 | + "workflow.build()\n", |
| 116 | + "workflow.deploy()\n", |
| 117 | + "\n", |
| 118 | + "# Step 4: Retrieve jobs after deployment\n", |
| 119 | + "workflow_actual = Workflow.get_jobs(env, server=\"workbench\", folder=\"Folder_Sanity_*\")\n", |
| 120 | + "\n", |
| 121 | + "print(workflow.dumps_json(indent=2))\n" |
| 122 | + ] |
| 123 | + }, |
| 124 | + { |
| 125 | + "cell_type": "markdown", |
| 126 | + "id": "7c0baf86", |
| 127 | + "metadata": {}, |
| 128 | + "source": [ |
| 129 | + "## Arguments" |
| 130 | + ] |
| 131 | + }, |
| 132 | + { |
| 133 | + "cell_type": "markdown", |
| 134 | + "id": "feb81b89", |
| 135 | + "metadata": {}, |
| 136 | + "source": [ |
| 137 | + "- **environment: Environment** :\n", |
| 138 | + " The Control-M environment to connect to. Required. \n", |
| 139 | + " This object defines the Control-M endpoint (Automation API endpoint, same as Control-M/EM), the authentication method, and the environment mode (on-prem or SaaS). \n", |
| 140 | + " You can create an Environment instance using one of the following static methods: \n", |
| 141 | + " - `create_workbench()` – for local development with Workbench. \n", |
| 142 | + " - `create_onprem(host, username, password)` – for on-premises Control-M using username/password authentication. \n", |
| 143 | + " - `create_saas(endpoint, api_key)` – for Helix Control-M (SaaS) using an API key. \n", |
| 144 | + " The environment determines how to authenticate and which API variant to use, depending on whether the backend is Control-M or Helix Control-M.\n", |
| 145 | + "\n", |
| 146 | + "\n", |
| 147 | + "- **server: str** :\n", |
| 148 | + "The exact Control-M/Server name to query. Required. \n", |
| 149 | + "No wildcards allowed.\n", |
| 150 | + "\n", |
| 151 | + "- **folder: str** :\n", |
| 152 | + "The folder name or pattern to fetch. Required. \n", |
| 153 | + "Supports wildcards (e.g., \"MyFolder_*\"). Filters jobs by folder name.\n", |
| 154 | + "\n", |
| 155 | + "- **job: str** (Not supported yet) \n", |
| 156 | + " Currently not supported. The API ignores this parameter if provided." |
| 157 | + ] |
| 158 | + }, |
| 159 | + { |
| 160 | + "cell_type": "code", |
| 161 | + "execution_count": null, |
| 162 | + "id": "59899dfc", |
| 163 | + "metadata": {}, |
| 164 | + "outputs": [], |
| 165 | + "source": [] |
| 166 | + } |
| 167 | + ], |
| 168 | + "metadata": { |
| 169 | + "kernelspec": { |
| 170 | + "display_name": "venv", |
| 171 | + "language": "python", |
| 172 | + "name": "python3" |
| 173 | + }, |
| 174 | + "language_info": { |
| 175 | + "codemirror_mode": { |
| 176 | + "name": "ipython", |
| 177 | + "version": 3 |
| 178 | + }, |
| 179 | + "file_extension": ".py", |
| 180 | + "mimetype": "text/x-python", |
| 181 | + "name": "python", |
| 182 | + "nbconvert_exporter": "python", |
| 183 | + "pygments_lexer": "ipython3", |
| 184 | + "version": "3.12.6" |
| 185 | + } |
| 186 | + }, |
| 187 | + "nbformat": 4, |
| 188 | + "nbformat_minor": 5 |
| 189 | +} |
0 commit comments