-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathaction_retrieval.py
220 lines (163 loc) · 7.62 KB
/
action_retrieval.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
import argparse
import os
import random
import warnings
import torch
import torch.nn as nn
import torch.backends.cudnn as cudnn
import torch.optim
import torch.utils.data
import numpy as np
from sklearn.neighbors import KNeighborsClassifier
from sklearn import preprocessing
from sklearn.metrics import accuracy_score
from scd.scd_encoder import DownstreamEncoder
from dataset import get_finetune_training_set, get_finetune_validation_set
parser = argparse.ArgumentParser(description='PyTorch ImageNet Training')
parser.add_argument('-j', '--workers', default=32, type=int, metavar='N',
help='number of data loading workers (default: 32)')
parser.add_argument('-b', '--batch-size', default=256, type=int,
metavar='N',
help='mini-batch size (default: 256), this is the total '
'batch size of all GPUs on the current node when '
'using Data Parallel or Distributed Data Parallel')
parser.add_argument('-p', '--print-freq', default=10, type=int,
metavar='N', help='print frequency (default: 10)')
parser.add_argument('--seed', default=None, type=int,
help='seed for initializing training. ')
parser.add_argument('--pretrained', default='', type=str,
help='path to moco pretrained checkpoint')
parser.add_argument('--finetune-dataset', default='ntu60', type=str,
help='which dataset to use for finetuning')
parser.add_argument('--protocol', default='cross_view', type=str,
help='traiining protocol of ntu')
parser.add_argument('--finetune-skeleton-representation', default='joint', type=str,
help='which skeleton-representation to use for downstream training')
parser.add_argument('--knn-neighbours', default=None, type=int,
help='number of neighbours used for KNN.')
best_acc1 = 0
# initilize weight
def weights_init(model):
with torch.no_grad():
for child in list(model.children()):
print("init ", child)
for param in list(child.parameters()):
if param.dim() == 2:
nn.init.xavier_uniform_(param)
print('PC weight initial finished!')
def load_moco_encoder_q(model, pretrained):
if os.path.isfile(pretrained):
print("=> loading checkpoint '{}'".format(pretrained))
checkpoint = torch.load(pretrained, map_location="cpu")
# rename moco pre-trained keys
state_dict = checkpoint['state_dict']
for k in list(state_dict.keys()):
# retain only encoder_q up to before the embedding layer
if k.startswith('encoder_q') and not k.startswith('encoder_q.fc'):
# remove prefix
state_dict[k[len("encoder_q."):]] = state_dict[k]
# delete renamed or unused k
del state_dict[k]
msg = model.load_state_dict(state_dict, strict=False)
print("message", msg)
print("=> loaded pre-trained model '{}'".format(pretrained))
else:
print("=> no checkpoint found at '{}'".format(pretrained))
def knn(data_train, data_test, label_train, label_test, nn=9):
label_train = np.asarray(label_train)
label_test = np.asarray(label_test)
print("Number of KNN Neighbours = ", nn)
print("training feature and labels", data_train.shape, len(label_train))
print("test feature and labels", data_test.shape, len(label_test))
Xtr_Norm = preprocessing.normalize(data_train)
Xte_Norm = preprocessing.normalize(data_test)
knn = KNeighborsClassifier(n_neighbors=nn,
metric='cosine')
knn.fit(Xtr_Norm, label_train)
pred = knn.predict(Xte_Norm)
acc = accuracy_score(pred, label_test)
return acc
def test_extract_hidden(model, data_train, data_eval):
model.eval()
for ith, (ith_data, label) in enumerate(data_train):
print(ith)
input_tensor = ith_data.cuda()
en_hi = model(input_tensor, knn_eval=True)
if ith == 0:
label_train = label
hidden_array_train = en_hi
else:
label_train = torch.cat((label_train, label))
hidden_array_train = torch.cat((hidden_array_train, en_hi))
model.eval()
for ith, (ith_data, label) in enumerate(data_eval):
print(ith)
input_tensor = ith_data.cuda()
en_hi = model(input_tensor, knn_eval=True)
en_hi = en_hi
if ith == 0:
hidden_array_eval = en_hi
label_eval = label
else:
label_eval = torch.cat((label_eval, label))
hidden_array_eval = torch.cat((hidden_array_eval, en_hi))
return hidden_array_train, hidden_array_eval, label_train, label_eval
def clustering_knn_acc(model, train_loader, eval_loader, knn_neighbours=1):
_train, _eval, label_train, label_eval = test_extract_hidden(model, train_loader, eval_loader)
knn_acc_1 = knn(_train.cpu(), _eval.cpu(), label_train, label_eval, nn=knn_neighbours)
return knn_acc_1
def main():
args = parser.parse_args()
if args.seed is not None:
random.seed(args.seed)
torch.manual_seed(args.seed)
cudnn.deterministic = True
warnings.warn('You have chosen to seed training. '
'This will turn on the CUDNN deterministic setting, '
'which can slow down your training considerably! '
'You may see unexpected behavior when restarting '
'from checkpoints.')
global best_acc1
# training dataset
from options import options_retrieval as options
if args.finetune_dataset == 'ntu60' and args.protocol == 'cross_view':
opts = options.opts_ntu_60_cross_view()
elif args.finetune_dataset == 'ntu60' and args.protocol == 'cross_subject':
opts = options.opts_ntu_60_cross_subject()
elif args.finetune_dataset == 'ntu120' and args.protocol == 'cross_setup':
opts = options.opts_ntu_120_cross_setup()
elif args.finetune_dataset == 'ntu120' and args.protocol == 'cross_subject':
opts = options.opts_ntu_120_cross_subject()
opts.train_feeder_args['input_representation'] = args.finetune_skeleton_representation
opts.test_feeder_args['input_representation'] = args.finetune_skeleton_representation
# create model
model = DownstreamEncoder(**opts.encoder_args)
print(model)
print("options", opts.encoder_args, opts.train_feeder_args, opts.test_feeder_args)
if not args.pretrained:
weights_init(model)
if args.pretrained:
# freeze all layers
for name, param in model.named_parameters():
param.requires_grad = False
# load from pre-trained model
load_moco_encoder_q(model, args.pretrained)
model = model.cuda()
# cudnn.benchmark = True
# Data loading code
train_dataset = get_finetune_training_set(opts)
val_dataset = get_finetune_validation_set(opts)
train_sampler = None
train_loader = torch.utils.data.DataLoader(
train_dataset, batch_size=args.batch_size, shuffle=(train_sampler is None),
num_workers=args.workers, pin_memory=True, sampler=train_sampler, drop_last=False)
val_loader = torch.utils.data.DataLoader(
val_dataset,
batch_size=args.batch_size, shuffle=False,
num_workers=args.workers, pin_memory=True,drop_last=False)
# Extract frozen features of the pre-trained query encoder
# evaluate a KNN classifier on extracted features
acc1 = clustering_knn_acc(model, train_loader, val_loader, knn_neighbours=args.knn_neighbours)
print("KNN retrieval acc = ", acc1)
if __name__ == '__main__':
main()