-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathODE.cpp
403 lines (335 loc) · 9.72 KB
/
ODE.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
#include "ODE.h"
#include <iostream>
#include <iomanip>
using namespace std;
vector<pair<double,double>> Runge_Kutta(double a, double b, int N, double w, double(*function)(double, double)){
vector<pair<double, double>> result;
double h = (b - a) / N;
double t = a;
result.push_back(pair<double,double>(t, w));
for (int i = 1; i < N+1; i++){
double K1 = h*function(t, w);
double K2 = h*function(t + h / 2, w + K1 / 2);
double K3 = h*function(t + h / 2, w + K2 / 2);
double K4 = h*function(t + h , w + K3);
w = w + (K1 + 2 * K2 + 2 * K3 + K4)/6;
t = a + i*h;
result.push_back(pair<double, double>(t, w));
}
return result;
}
void Runge_Kutta_Fehlberg(double a, double b, double TOL, double w, double hmax, double hmin,
double(*function)(double, double)){
double t = a;
double h = hmax;
bool FLAG = 1;
cout << "t:" << setprecision(10) << t << " w:" << w << endl;
while (FLAG == 1){
double K1 = h*function(t, w);
double K2 = h*function(t + h / 4.0, w + K1 / 4.0);
double K3 = h*function(t + 3.0 / 8.0 * h, w + 3.0 / 32.0 * K1 + 9.0 / 32.0 * K2);
double K4 = h*function(t + 12.0 / 13.0 * h, w + 1932.0 / 2197.0 * K1 - 7200.0 / 2197 * K2 + 7296.0 / 2197.0 * K3);
double K5 = h*function(t + h, w + 439.0 / 216.0 * K1 - 8 * K2 + 3680.0 / 513.0 * K3 - 845.0 / 4104 * K4);
double K6 = h*function(t + h / 2.0, w - 8.0 / 27.0 * K1 + 2.0 * K2 - 3544.0 / 2565.0 * K3 + 1859.0 / 4104.0 * K4 - 11.0 / 40.0 * K5);
//R为误差
double R = fabsf(K1 / 360.0 - 128.0 / 4275.0 * K3 - 2197.0 / 75240.0 * K4 + K5 / 50.0 + 2.0 / 55.0 * K6) / h;
if (R <= TOL){
//接受近似
t = t + h;
w = w + 25.0 / 216.0 * K1 + 1408.0 / 2565.0 * K3 + 2197.0 / 4104.0 * K4 - K5 / 5.0;
cout << "t:" << setprecision(10) << t << " w:" << setprecision(10) << w
<< " h:" << h <<" R:"<< setprecision(10)<<R<<endl;
}
//重新计算步长
double o = 0.84*sqrtf(sqrtf((TOL / R)));
if (o <= 0.1){
h = 0.1*h;
}
else if (o >= 4){
h = 4 * h;
}
else{
h = o*h;
}
//判断算法是否失败
if (h >= hmax){
h = hmax;
}
if (t >= b){
FLAG = 0;
}
else if (t + h > b){
h = b - t;
}
else if (h < hmin){
FLAG = 0;
cout << "算法失败!" << endl;
return;
}
}
cout << "算法成功!" << endl;
}
void Adams(double a, double b, int N,double w, double(*function)(double, double)){
double h = (b - a) / N;
double t = a;
double *tt = new double[4];
double *ww = new double[4];
tt[0] = t;
ww[0] = w;
cout << "t0:" << setprecision(10) << t << " w0:" << setprecision(10) << w << endl;
/*
使用Runge-Kutta方法计算初始值
*/
for (int i = 1; i < 4; i++){
double K1 = h*function(tt[i-1], ww[i-1]);
double K2 = h*function(tt[i-1] + h / 2, ww[i-1] + K1 / 2);
double K3 = h*function(tt[i-1] + h / 2, ww[i-1] + K2 / 2);
double K4 = h*function(tt[i-1] + h, ww[i-1] + K3);
ww[i] = ww[i-1] + (K1 + 2 * K2 + 2 * K3 + K4) / 6;
tt[i] = a + i*h;
cout << "t:" << setprecision(10) << tt[i] << " w:"
<< setprecision(10) << ww[i] << endl;
}
for (int i = 4; i < N + 1; i++){
t = a + i*h;
//预测wi
w = ww[3] + h*(55.0*function(tt[3], ww[3]) - 59 * function(tt[2], ww[2]) +
37 * function(tt[1], ww[1]) - 9 * function(tt[0], ww[0])) / 24.0;
//校正wi
w = ww[3] + h*(9 * function(t, w) + 19 * function(tt[3], ww[3]) - 5 * function(tt[2], ww[2])
+ function(tt[1], ww[1])) / 24.0;
cout << "t:" << setprecision(10) << t << " w:" << setprecision(10)
<< w << endl;
//准备下一次迭代
for (int j = 0; j < 3; j++){
tt[j] = tt[j + 1];
ww[j] = ww[j + 1];
}
tt[3] = t;
ww[3] = w;
}
}
void Extrapolation(double a, double b, double w, double TOL, double hmax, double hmin,
double(*function)(double, double)){
double NK[] = { 2,4, 6, 8, 12, 16, 24, 32 };
double TO = a;
double WO = w;
double h = hmax;
bool FLAG = 1;
double *y = new double[8];
double **Q = new double*[8];
for (int i = 0; i < 8; i++){
Q[i] = new double[8];
}
for (int i = 1; i < 8; i++){
for (int j = 1; j < i; j++){
//Qij=hi^2/hi+1^2
Q[i][j] = powf(NK[i + 1] / NK[j],2);
}
}
while (FLAG == 1){
int k = 1;
bool NFLAG = 0;
while (k <= 8 && NFLAG == 0){
double HK = h / NK[k];
double T = TO;
double W2 = WO;
double W3 = W2 + HK*function(T, W2);//Euler法的第一步
T = TO + HK;
for (int j = 1; j < NK[k]; j++){
double W1 = W2;
W2 = W3;
W3 = W1 + 2 * HK*function(T, W3);//中点法
T = TO + (j + 1)*HK;
}
//计算yk,1的端点校正
double yk = (W3 + W2 + HK*function(T, W3)) / 2;
//yk-1=yk-1,1,yk-2=yk-1,2....y1=yk-1,k-1
if (k >= 2){
int j = k;
double v=y[k-1];
while (j >= 2){
/*
外推法计算(yj-1=yk,k-j+2, yj-1=(hj-1^2*yj-hk^2*yj-1)/(hj-1^2-hk^2)
*/
y[j-1]= (y[j]-y[j-1])/(Q[k-1][j-1]-1);
j = j - 1;
}
if (fabsf(y[k-1]<v) < TOL){
//y1被接受作为新的w
NFLAG = 1;
}
}
k = k + 1;
}
k = k - 1;
if (NFLAG == 0){
//结果被拒绝
h = h / 2;//w的新值被拒绝,减小h
if (h < hmin){
cout << "hmin exceeded!" << endl;
}
FLAG = 0;
}
//结果被接受
else{
WO = y[k-1];
TO = TO + h;
cout << "t:" << setprecision(10) << TO << " w:" << setprecision(10) << WO
<< " h:" << setprecision(10) << h << endl;
if (TO >= b){
FLAG = 0;
cout << "算法成功完成!" << endl;
}
else if (TO + h > b){
h = b - TO;
}
else if (k <= 3 && h < 0.5*hmax){
h = 2 * h;
}
}
}
}
void Equations_Runge_Kutta(double a, double b, int m, int N, double *w0,
double(**function)(double,double*)){
double h = (b - a) / N;
double t = a;
double *k1 = new double[m];
double *k2 = new double[m];
double *k3 = new double[m];
double *k4 = new double[m];
double *w = new double[m];
double *w1 = new double[m];
double *w2 = new double[m];
double *w3 = new double[m];
for (int j = 0; j < m; j++){
w[j] = w0[j];
}
cout << "t:" << t;
for (int i = 0; i < m; i++){
cout << " w" << i << ":" << w0[i];
}
cout << endl;
for (int i = 0; i < N; i++){
for (int j = 0; j < m; j++){
k1[j] = h*function[j](t, w);
}
for (int j = 0; j < m; j++){
for (int p = 0; p < m; p++){
w1[p] = w[p] + k1[p]/2;
}
k2[j] = h*function[j](t + h / 2,w1);
}
for (int j = 0; j < m; j++){
for (int p = 0; p < m; p++){
w2[p] = w[p] + k2[p] / 2;
}
k3[j] = h*function[j](t + h / 2, w2);
}
for (int j = 0; j < m; j++){
for (int p = 0; p < m; p++){
w3[p] = w[p] + k3[p];
}
k4[j] = h*function[j](t + h , w3);
}
for (int j = 0; j < m; j++){
w[j] = w[j] + (k1[j] + 2*k2[j] + 2*k3[j]+k4[j])/6;
}
t = a + (i+1)*h;
cout << "t:" << t;
for (int i = 0; i < m; i++){
cout << " w" << i << ":" << w[i];
}
cout << endl;
}
}
double Runge_Kutta_Function(double x, double y){
return y - powf(x, 2) + 1;
}
void LinearShootMethod(double a, double b, double r0, double r1, int N,
double(*function1)(double,double,double),double(*function2)(double,double,double)){
double h = (b - a) / N;
double *u1 = new double[N+1];
double *u2 = new double[N+1];
double *v1 = new double[N+1];
double *v2 = new double[N+1];
u1[0] = r0;
u2[0] = 0;
v1[0] = 0;
v2[0] = 1;
for (int i = 0; i < N; i++){
double x = a + i*h;
double k11 = h*u2[i];
double k12 = h*(function1(x,u2[i], u1[i]));
double k21 = h*(u2[i] + k12 / 2);
double k22 = h*(function1(x + h / 2, u2[i] + k12 / 2, u1[i] + k11 / 2));
double k31 = h*(u2[i] + k22 / 2);
double k32 = h*function1(x + h / 2, u2[i] + k22 / 2, u1[i] + k21 / 2);
double k41 = h*(u2[i] + k32);
double k42 = h*(function1(x + h , u2[i] + k32, u1[i] + k31));
u1[i+1] = u1[i] + (k11 + 2 * k21 + 2*k31 + k41) / 6;
u2[i+1] = u2[i] + (k12 + 2 * k22 + 2 * k32 + k42) / 6;
double kk11 = h*v2[i];
double kk12 = h*function2(x, v2[i], v1[i]);
double kk21 = h*(v2[i] + kk12 / 2);
double kk22 = h*function2(x + h / 2, v2[i] + kk12 / 2, v1[i] + kk11 / 2);
double kk31 = h*(v2[i] + kk22 / 2);
double kk32 = h*function2(x + h / 2, v2[i] + kk22 / 2, v1[i] + kk21 / 2);
double kk41 = h*(v2[i] + kk32);
double kk42 = h*function2(x + h, v2[i] + kk32, v1[i] + kk31);
v1[i+1] = v1[i] + (kk11 + 2 * kk21 + 2 * kk31 + kk41) / 6;
v2[i+1] = v2[i] + (kk12 + 2 * kk22 + 2 * kk32 + kk42) / 6;
}
double w1 = r0;
double w2 = (r1 - u1[N]) / v1[N];
cout << "x1:" << a << " w1:" << w1 << " ww1:" << w2 << endl;
for (int i = 1; i < N+1; i++){
double W1 = u1[i] + w2*v1[i];
double W2 = u2[i] + w2*v2[i];
double x = a + i*h;
cout << "x" << i + 1 << ":" <<x<< " w" << i + 1 << ":" << W1 << " ww" << i + 1 << ":" << W2 << endl;
}
}
void testRunge_Kutta(){
vector<pair<double, double>> result = Runge_Kutta(0, 2, 10, 0.5, Runge_Kutta_Function);
cout << "Runge_Kutta执行结果:" << endl;
int i = 0;
for (pair<double, double> p : result){
cout << "迭代次数:" << ++i << " t:" << setprecision(10)<<p.first <<
" w:" << setprecision(10)<<p.second << endl;
}
}
void testRunge_Kutta_Fehlberg(){
Runge_Kutta_Fehlberg(0, 2, 0.00001, 0.5, 0.25, 0.01, Runge_Kutta_Function);
}
void testAdams(){
Adams(0, 2, 10, 0.5, Runge_Kutta_Function);
}
void testExtrapolation(){
Extrapolation(0, 2, 0.5, 0.00000001, 0.25, 0.01, Runge_Kutta_Function);
}
double function1(double t,double *a){
return a[1];
}
double function2(double t,double *a){
double result=exp(2 * t)*sin(t) - 2 * a[0] + 2 * a[1];
return result;
}
void testEquations_Runge_Kutta(){
double(*function[2])(double, double*);
function[0] = function1;
function[1] = function2;
double *w0 = new double[2];
w0[0] = -0.4;
w0[1] = -0.6;
Equations_Runge_Kutta(0,1,2,10,w0,function);
}
double LinearShootMethodFunction1(double a, double b, double c){
return -2.0 / a*b + 2.0 / pow(a, 2)*c + sin(log(a)) / pow(a, 2);
}
double LinearShootMethodFunction2(double a, double b, double c){
return -2.0 / a*b + 2.0 / pow(a, 2)*c;
}
void testLinearShootMethod(){
LinearShootMethod(1, 2, 1, 2, 10, LinearShootMethodFunction1, LinearShootMethodFunction2);
}