-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathInterpolation.cpp
151 lines (124 loc) · 3.27 KB
/
Interpolation.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
#include "Interpolation.h"
#include <iostream>
using namespace std;
double** Neville(double x,vector<double> xn, vector<double> fx){
int size=xn.size();
double **q = (double**)new double*[size];
for (int i = 0; i < size; i++){
q[i] = new double[size];
}
//计算Qnn的初始值
for (int i = 0; i < size; i++){
q[i][0] = fx[i];
}
//计算其他的Qnn
for (int i = 1; i < size; i++){
for (int j = 1; j <=i; j++){
q[i][j] = ((x - xn[i - j])*q[i][j - 1] - (x - xn[i])*q[i - 1][j - 1]) / (xn[i] - xn[i - j]);
cout << "Q["<<i<<"]"<<"["<<j<<"]:" << q[i][j] << endl;
}
}
return q;
}
double** divideNewton(vector<double> xn, vector<double> fx){
int size = xn.size();
double **f = (double**)new double*[size];
for (int i = 0; i < size; i++){
f[i] = new double[size];
}
//计算Fn0的值
for (int i = 0; i < size; i++){
f[i][0] = fx[i];
}
//计算差商
for (int i = 1; i < xn.size(); i++){
for (int j = 1; j < i + 1; j++){
f[i][j] = (f[i][j - 1] - f[i - 1][j - 1]) / (xn[i] - xn[i-j]);
cout << "F[" << i << "][" << j << "]:" << f[i][j] << endl;
}
}
return f;
}
double** Hermite(vector<double> xn, vector<double> fx,vector<double> fxx){
int size = xn.size();
double **q = new double *[2*size+1];
double *zn = new double[2 * size + 1];
for (int i = 0; i < 2*size+1; i++){
q[i] = new double[2*size+1];
}
for (int i = 0; i < size; i++){
zn[2*i] = xn[i];
zn[2*i + 1] = xn[i];
q[2 * i][0] = fx[i];
q[2 * i + 1][0] = fx[i];
q[2 * i + 1][1] = fxx[i];
if (i != 0){
q[2 * i][1] = (q[2 * i][0] - q[2 * i - 1][0]) / (zn[2 * i] - zn[2 * i - 1]);
}
}
for (int i = 2; i < 2 * size + 1; i++){
for (int j = 2; j <= i; j++){
q[i][j] = (q[i][j-1] - q[i - 1][j-1]) / (zn[i] - zn[i - j]);
}
}
return q;
}
double** CubicSpline(vector<double> xn, vector<double> fx){
int size = xn.size();
double **p = new double *[size];
for (int i = 0; i < size; i++){
p[i] = new double[4];
}
//复制fx到p[][0]
for (int i = 0; i < fx.size(); i++){
p[i][0] = fx[i];
}
double *h = new double[size];
double *l = new double[size];
double *u = new double[size];
double *z = new double[size];
for (int i = 0; i < size - 1; i++){
h[i] = xn[i + 1] - xn[i];
}
for (int i = 1; i < size - 1; i++){
fx[i] = 3 / h[i] * (fx[i + 1] - fx[i]) - 3 / h[i - 1] * (fx[i] - fx[i - 1]);
}
l[0] = 1;
u[0] = 0;
z[0] = 0;
for (int i = 1; i < size - 1; i++){
l[i] = 2 * (xn[i + 1] - xn[i - 1]) - h[i - 1] * u[i - 1];
u[i] = h[i] / l[i];
z[i] = (fx[i] - h[i - 1] * z[i - 1]) / l[i];
}
l[size - 1] = 1;
z[size - 1] = 0;
p[size - 1][2] = 0;
for (int j = size - 2; j >= 0; j--){
p[j][2] = z[j] - u[j] * p[j+1][2];
p[j][1] = (fx[j + 1] - fx[j]) / h[j] - h[j] * (p[j + 1][2] + 2 * p[j][2]) / 3;
p[j][3] = (p[j + 1][2] - p[j][2]) / (3 * h[j]);
}
return p;
}
void testCubicSpline(){
vector<double> xn;
vector<double> fx;
xn.push_back(0.9);
fx.push_back(1.3);
xn.push_back(1.3);
fx.push_back(1.5);
xn.push_back(1.9);
fx.push_back(1.85);
xn.push_back(2.1);
fx.push_back(2.1);
double **p=CubicSpline(xn, fx);
for (int i = 0; i < xn.size()-1; i++){
cout << "-------------------" << endl;
cout << "a:" << p[i][0] << endl;
cout << "b:" << p[i][1] << endl;
cout << "c:" << p[i][2] << endl;
cout << "d:" << p[i][3] << endl;
cout << "----------------------" << endl;
}
}