-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
210 lines (185 loc) · 9.25 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
import argparse
import numpy as np
import os
import torch
import warnings
warnings.filterwarnings("ignore")
from src.experiments import (experiment_correlation_extraction,
experiment_grid_attack,
experiment_randomized_target_attack,
experiment_randomized_target_attack_model_less_only,
experiment_randomized_target_attack_mitigations,
experiment_real_dataset)
from src.aia import experiment_aia
def str2bool(s):
if s == 'True':
return True
elif s == 'False':
return False
else:
raise argparse.ArgumentTypeError('Boolean value expected.')
def list_int(val):
"""List of ints."""
return [int(ns) for ns in val.split(',')]
def get_parser():
parser = argparse.ArgumentParser(description=
'Dataset correlation inference attack against ML models.')
parser.add_argument('--experiment_name', type=str,
default='grid_attack')
parser.add_argument('--save_dir', type=str, default='experiments')
parser.add_argument('--datasets_dir', type=str, default='datasets')
# Number of target correlation matrices to attack. Only applies to the
# `randomized_target_attack` experiment.
parser.add_argument('--nbr_targets', type=int, default=1000)
parser.add_argument('--balanced_test', type=str2bool, default=False)
parser.add_argument('--balanced_train', type=str2bool, default=False)
parser.add_argument('--nbr_columns', type=int, default=3)
parser.add_argument('--nbr_shadow_datasets', type=int, default=1500)
parser.add_argument('--nbr_data_samples', type=int, default=1000)
parser.add_argument('--target_test_size', type=float, default=0.33333)
parser.add_argument('--shadow_test_size', type=float, default=0)
parser.add_argument('--nbr_data_samples_bb_aux', type=int, default=1000)
parser.add_argument('--device', type=str, default='cuda')
parser.add_argument('--nbr_bins', type=int, default=3)
# Number of divisions of the [-1, 1] interval. Used to evaluate all ranges
# of Corr(Xi, Y) for each 1 <= i <= `nbr_columns`-1. Provided as a
# comma-separated list of integers, such that [-1, 1] will be divided
# into 2*l[i] equally sized interval. The list length should be equal to
# `nbr_columns`-1.
# To be used only for --experiment_name=grid_attack.
parser.add_argument('--lengths', type=list_int, default='10,10')
parser.add_argument('--seed', type=int, default=42)
parser.add_argument('--nbr_cores', type=int, default=4)
parser.add_argument('--nbr_gpus', type=int, default=2)
# The default value of -1 means that all the figures are used, while
# a non-negative values means that the prediction will be rounded.
parser.add_argument('--nbr_significant_figures', type=int, default=-1)
# Shadow model arguments.
parser.add_argument('--shadow_model_type', type=str, default='logreg',
help='Should be one of `logreg`, `logregdp`, `mlp`, or `mlptorch`.')
# Differential privacy arguments.
parser.add_argument('--epsilon', type=float, default=1.0,help='Value of the budget, should be a float like 1.0')
# Meta model arguments.
parser.add_argument('--meta_model_type', type=str, default='logreg',
help='Should be one of `logreg`, `mlp`, or `mlptorch`.')
parser.add_argument('--verbose', type=str2bool, default=False)
parser.add_argument('--same_seed', type=str2bool, default=False)
# Arguments for the experiment evaluation mitigations to the black-box
# correlation inference attack.
parser.add_argument('--nbrs_significant_figures', type=str,
default='0,1,2,3,-1',
help='Comma-separated list of number of significant figures')
parser.add_argument('--nbrs_data_samples_bb_aux', type=str,
default='5,10,20,50,100,200,500,1000,2000,5000',
help='Comma-separated list of number of queries.')
# The correlation constraints known to the attacker when n>3. There are
# three possibilities:
# 1. "column": Knowledge of the last column, i.e., the correlations between
# Xi and Y for every i = 1, ..., n-1.
# 2. "two": Knowledge of the correlations between X1 and Y and X2 and Y.
# 3. "all_but_target": Knowledge of all the correlations except for the
# target correlation between X1 and X2.
parser.add_argument('--constraints_scenario', type=str, default='column',
help='Choose one between `column`, `two` and `all_but_target`')
# Arguments for the real dataset evaluation.
parser.add_argument('--dataset_name', type=str, default=
'communities_and_crime')
parser.add_argument('--min_repetition', type=int, default=0)
parser.add_argument('--nbr_repetitions', type=int, default=1)
parser.add_argument('--nbr_marginal_bins', type=int, default=100)
# Arguments for the attribute inference attack.
parser.add_argument('--attack_method', type=str, default='fredrikson')
parser.add_argument('--nbr_target_records', type=int, default=100)
parser.add_argument('--nbr_rep', type=int, default=2)
return parser
def check_args(args):
assert args.experiment_name in ['grid_attack',
'randomized_target_attack',
'randomized_target_attack_model_less_only',
'randomized_target_attack_mitigations',
'real_dataset_attack',
'aia',
'aia2',
'correlation_extraction',
'dp_target_attack'], \
f'Invalid experiment name {args.experiment_name}'
if args.experiment_name == 'grid_attack':
assert len(args.lengths) == args.nbr_columns - 1
assert args.constraints_scenario in ['column', 'two', 'all_but_target'],\
f'ERROR: Invalid --constraints={args.constraints_scenario}.'
assert args.dataset_name in ['communities_and_crime',
'communities_and_crime_v2', 'fifa19', 'fifa19_v2', 'musk'],\
f'ERROR: Invalid --dataset_name={args.dataset_name}.'
assert args.nbr_gpus in [1, 2], \
f'ERROR: Invalid --nbr_gpus={args.nbr_gpus}'
assert args.attack_method in ['cia_synth_wcai_v1',
'cia_synth_wcai_v2',
'cia_synth_wcai_v3',
'cia_synth_wcai_v4',
'wcai',
'cai',
'fredrikson',
'yeom',
'csmia',
'cia_aia_model_less',
'cia_aia_model_based',
'copula_base',
'marginal_prior'],\
f'ERROR: Invalid --attack_method={args.attack_method}'
if __name__ == '__main__' :
args = get_parser().parse_args()
check_args(args)
print(args)
if args.experiment_name == 'randomized_target_attack':
if args.balanced_test and args.balanced_train:
balanced_dir = 'balanced_train_test'
elif args.balanced_test:
balanced_dir = 'balanced_test'
else:
balanced_dir = 'imbalanced'
else:
balanced_dir = ''
if args.experiment_name in ['real_dataset_attack', 'aia',
'correlation_extraction']:
dataset_dir = args.dataset_name
else:
dataset_dir = ''
save_dir = os.path.join(args.save_dir, args.experiment_name,
dataset_dir, balanced_dir, f'cols-{args.nbr_columns}')
if not os.path.exists(save_dir):
os.makedirs(save_dir)
print(f'Save directory: {save_dir}')
if args.experiment_name == 'grid_attack':
experiment_grid_attack(save_dir, args)
elif args.experiment_name in ['randomized_target_attack',
'dp_target_attack']:
experiment_randomized_target_attack(save_dir, args)
elif args.experiment_name == 'randomized_target_attack_mitigations':
experiment_randomized_target_attack_mitigations(save_dir, args)
elif args.experiment_name == 'randomized_target_attack_model_less_only':
experiment_randomized_target_attack_model_less_only(save_dir, args)
elif args.experiment_name == 'real_dataset_attack':
np.random.seed(args.seed)
# Up to 100 repetitions, change this if you wish to run more
# repetitions.
assert args.nbr_repetitions <= 100, f'ERROR: Too many repetitions, increase the number of repetitions {args.nbr_repetitions}'
seeds = np.random.randint(10**8, size=100)
for r in range(args.min_repetition, args.nbr_repetitions, 1):
print(f'Executing run #{r+1} of the attack.')
experiment_real_dataset(save_dir, args, seeds[r])
elif args.experiment_name == 'aia':
if not torch.cuda.is_available():
print('CUDA is not available. Setting the device to `cpu`.')
args.device = 'cpu'
np.random.seed(args.seed)
# Up to 100 repetitions, change this if you wish to run more
# repetitions.
assert args.nbr_repetitions <= 100, f'ERROR: Too many repetitions, increase the number of repetitions {args.nbr_repetitions}'
seeds = np.random.randint(10**8, size=100)
for r in range(args.min_repetition, args.nbr_repetitions, 1):
print(f'Executing run #{r+1} of the attack.')
experiment_aia(save_dir, args, seeds[r])
elif args.experiment_name == 'correlation_extraction':
experiment_correlation_extraction(save_dir, args)
else:
raise ValueError(f'Unknown --experiment_name={args.experiment_name}')