-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtrainer.py
220 lines (172 loc) · 7.27 KB
/
trainer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
import os
import sys
import time
import warnings
import numpy as np
import pandas as pd
import torch
from config import MODEL_DIR, STORAGE_DIR
class Trainer:
def __init__(self, args, dataloaders, device):
self.args = args
self.trainloader, self.plainloader, self.testloader = dataloaders
self.num_epochs = args.epochs
self.device = device
self.loss_func = torch.nn.CrossEntropyLoss()
self.loss_func_sample = torch.nn.CrossEntropyLoss(reduction='none')
@staticmethod
def get_optimizer(training_params, lr, momentum, weight_decay):
optimizer = torch.optim.SGD(
training_params,
lr=lr,
momentum=momentum,
weight_decay=weight_decay
)
return optimizer
@staticmethod
def get_training_params(model):
num_params = 0
num_training_params = 0
training_params = []
for p in model.parameters():
num_params += p.numel()
if p.requires_grad:
training_params.append(p)
num_training_params += p.numel()
print(f'Training {num_training_params / (10 ** 6)}M parameters out of {num_params / (10 ** 6)}M')
return training_params
def get_all_losses(self, model, args):
model.eval()
all_losses = []
for inputs, targets, _indices in self.plainloader:
inputs, targets = inputs.to(self.device), targets.to(self.device)
with warnings.catch_warnings():
warnings.simplefilter('ignore')
outputs = model(inputs).squeeze(-1).squeeze(-1)
losses = self.loss_func_sample(outputs, targets)
all_losses.extend(losses.tolist())
# all_losses = torch.cat(all_losses, dim=0)
model.train()
return all_losses#.tolist()
def train_epoch(self, model, epoch, computed_losses, args):
print('\nEpoch: %d' % epoch)
model.train()
total = 0
correct = 0
t0 = time.time()
# collect init losses
if args.track_computed_loss and epoch == 0:
computed_losses.append(self.get_all_losses(model, args))
for batch_idx, (inputs, targets, indices) in enumerate(self.trainloader):
model.zero_grad()
self.optimizer.zero_grad()
inputs, targets = inputs.to(self.device), targets.to(self.device)
with warnings.catch_warnings():
warnings.simplefilter('ignore')
outputs = model(inputs).squeeze(-1).squeeze(-1)
losses = self.loss_func_sample(outputs, targets)
if args.track_free_loss:
self.free_train_losses.loc[indices.tolist(), epoch] = losses.tolist()
losses.mean().backward()
self.optimizer.step()
_, predicted = torch.max(outputs.data, 1)
minibatch_correct = predicted.eq(targets.data).float().cpu()
total += targets.size(0)
correct += minibatch_correct.sum()
if args.track_computed_loss:
computed_losses.append(self.get_all_losses(model, args))
t1 = time.time()
self.scheduler.step()
acc = (100. * float(correct) / float(total)) if total > 0 else 0.0
print('Time: %d s' % (t1 - t0), 'train acc:', acc, end=' ')
return acc
def train_test(self, model, args, model_id):
self.training_params = self.get_training_params(model)
self.optimizer = self.get_optimizer(self.training_params, args.lr, args.momentum, args.weight_decay)
self.scheduler = torch.optim.lr_scheduler.CosineAnnealingLR(self.optimizer, args.epochs)
# init loss stores
computed_losses = []
self.free_train_losses = pd.DataFrame(np.full((len(self.trainloader.dataset), args.epochs), np.nan))
self.free_train_losses.index = self.trainloader.dataset.indices
num_training = len(self.trainloader.dataset)
num_test = len(self.testloader.dataset)
print('Training on: ', num_training, 'Testing on: ', num_test)
steps_per_epoch = (num_training // args.batchsize)
if (num_training % args.batchsize != 0):
steps_per_epoch += 1
print(f'-------- Training model {model_id} --------')
print('\n==> Starting training')
for epoch in range(args.epochs):
train_acc = self.train_epoch(model, epoch, computed_losses, args)
test_acc = self.test(model, args)
if args.checkpoint and (epoch + 1) % 5 == 0:
save_model(model, args, self.trainloader, train_acc, test_acc, checkpoint=True, epoch=epoch)
print('\n==> Finished training')
if args.track_free_loss:
save_free_loss(self.free_train_losses, args)
if args.track_computed_loss:
save_tracking_data(computed_losses, args)
save_model(model, args, self.trainloader, train_acc, test_acc)
def test(self, model, args):
model.eval()
correct = 0
total = 0
with torch.no_grad():
for inputs, targets, _indices in self.testloader:
inputs, targets = inputs.to(self.device), targets.to(self.device)
outputs = model(inputs).squeeze(-1).squeeze(-1)
_, predicted = torch.max(outputs.data, 1)
total += targets.size(0)
correct_idx = predicted.eq(targets.data).cpu()
correct += correct_idx.sum()
acc = 100. * float(correct) / float(total)
print('test acc:', acc)
return acc
def save_free_loss(train_loss, args):
train_dir = os.path.join(STORAGE_DIR, 'free_train_losses')
os.makedirs(train_dir, exist_ok=True)
file = args.exp_id
if args.dual:
file += f'_dual_{args.dual}'
file += '.pq'
train_path = os.path.join(train_dir, file)
train_loss.to_parquet(train_path)
def save_tracking_data(computed_losses, args):
outdir = os.path.join(STORAGE_DIR, 'losses')
os.makedirs(outdir, exist_ok=True)
file = args.exp_id
if args.dual:
file += f'_dual_{args.dual}'
elif args.shadow_count:
file += f'_shadow_{str(args.shadow_id)}'
file += '.pq'
fullpath = os.path.join(outdir, file)
if os.path.exists(fullpath):
print("'DUPLICATE' LOSS - OVERWRITING PREVIOUS", file=sys.stderr)
pd.DataFrame(computed_losses).transpose().to_parquet(fullpath)
def save_model(model, args, trainloader, train_acc, test_acc, checkpoint=False, epoch=None):
if args.shadow_count:
save_name = 'shadow_' + str(args.shadow_id)
elif args.dual:
save_name = f'dual_{args.dual}'
elif args.track_computed_loss or args.track_free_loss:
save_name = 'target'
else:
save_name = 'model'
model_state_dict = model.state_dict()
dic = {
'model_state_dict': model_state_dict,
'hyperparameters': vars(args),
'trained_on_indices': trainloader.dataset.indices,
'arch': args.arch,
'seed': args.seed,
'dataset': args.dataset,
'train_acc': train_acc,
'test_acc': test_acc
}
dir = os.path.join(MODEL_DIR, args.exp_id)
if checkpoint:
dir = os.path.join(dir, f'checkpoint_before_{epoch + 1}')
os.makedirs(dir, exist_ok=True)
fullpath = os.path.join(dir, save_name)
torch.save(dic, fullpath)