@@ -49,7 +49,7 @@ lemma abel_summation {a : ArithmeticFunction ℝ} (x y : ℝ) (hx : 0 < x) (hxy
49
49
← intervalIntegral.integral_deriv_eq_sub hϕ₁ hϕ₂, ← intervalIntegral.integral_const_mul,
50
50
intervalIntegral.integral_of_le hxy.le, integral_Ioc_eq_integral_Ioo,
51
51
integral_Icc_eq_integral_Ioo]
52
- apply setIntegral_congr
52
+ apply setIntegral_congr_fun
53
53
· exact measurableSet_Ioo
54
54
· intro z hz
55
55
have : ⌊z⌋₊ = ⌊y⌋₊ := by
@@ -283,36 +283,6 @@ lemma abel_summation {a : ArithmeticFunction ℝ} (x y : ℝ) (hx : 0 < x) (hxy
283
283
intervalIntegral.integral_add_adjacent_intervals (hab.trans hbc) hcd]
284
284
simp [A, intervalIntegral.integral_of_le hxy.le, MeasureTheory.integral_Icc_eq_integral_Ioc]
285
285
286
- lemma nth_prime_one_eq_three : nth Nat.Prime 1 = 3 := nth_count prime_three
287
-
288
- @[simp]
289
- lemma Nat.primeCounting'_eq_zero_iff {n : ℕ} : n.primeCounting' = 0 ↔ n ≤ 2 := by
290
- refine ⟨?_, ?_⟩
291
- · contrapose!
292
- intro h
293
- replace h : 3 ≤ n := by omega
294
- have := monotone_primeCounting' h
295
- have := nth_prime_one_eq_three ▸ primeCounting'_nth_eq 1
296
- omega
297
- · intro hn
298
- have := zeroth_prime_eq_two ▸ primeCounting'_nth_eq 0
299
- have := monotone_primeCounting' hn
300
- omega
301
-
302
-
303
- @[simp]
304
- lemma Nat.primeCounting_eq_zero_iff {n : ℕ} : n.primeCounting = 0 ↔ n ≤ 1 := by
305
- simp [Nat.primeCounting]
306
-
307
- @[simp]
308
- lemma Nat.primeCounting_zero : Nat.primeCounting 0 = 0 :=
309
- Nat.primeCounting_eq_zero_iff.mpr zero_le_one
310
-
311
- @[simp]
312
- lemma Nat.primeCounting_one : Nat.primeCounting 1 = 0 :=
313
- Nat.primeCounting_eq_zero_iff.mpr le_rfl
314
-
315
-
316
286
-- @[ simps ]
317
287
-- def ArithmeticFunction.primeCounting : ArithmeticFunction ℝ where
318
288
-- toFun x := Nat.primeCounting ⌊x⌋₊
@@ -432,7 +402,7 @@ lemma th43_b (x : ℝ) (hx : 2 ≤ x) :
432
402
symm
433
403
apply Set.Ico_union_Icc_eq_Icc ?_ hx
434
404
norm_num
435
- rw [this, integral_union ]
405
+ rw [this, setIntegral_union ]
436
406
· simp only [add_left_eq_self]
437
407
apply integral_eq_zero_of_ae
438
408
simp only [measurableSet_Ico, ae_restrict_eq]
@@ -699,7 +669,7 @@ lemma sum_von_mangoldt_sub_sum_primes_le (x : ℝ) (hx: 2 ≤ x) :
699
669
calc
700
670
_ ≤ x^(1 :ℝ) := by
701
671
apply rpow_le_rpow_of_exponent_le hx_one
702
- apply inv_le_one
672
+ apply inv_le_one_of_one_le₀
703
673
simp only [one_le_cast]
704
674
exact one_le_two.trans hk.1
705
675
_ = _ := by
@@ -720,7 +690,7 @@ lemma sum_von_mangoldt_sub_sum_primes_le (x : ℝ) (hx: 2 ≤ x) :
720
690
apply floor_le_floor
721
691
apply rpow_le_rpow_of_exponent_le hx_one
722
692
simp at hk
723
- rw [inv_le_inv _ zero_lt_two]
693
+ rw [inv_le_inv₀ _ zero_lt_two]
724
694
. exact ofNat_le_cast.mpr hk.1
725
695
simp only [cast_pos]
726
696
exact lt_of_lt_of_le zero_lt_two hk.1
@@ -821,7 +791,7 @@ theorem WeakPNT'' : (fun x ↦ ∑ n in (Iic ⌊x⌋₊), Λ n) ~[atTop] (fun x
821
791
intro b hb
822
792
have hb' : 0 ≤ b := le_of_lt (lt_of_lt_of_le (inv_pos_of_pos hε) hb)
823
793
rw [abs_of_nonneg, abs_of_nonneg hb']
824
- . apply LE.le.trans _ ((inv_pos_le_iff_one_le_mul ' hε).mp hb)
794
+ . apply LE.le.trans _ ((inv_le_iff_one_le_mul₀ ' hε).mp hb)
825
795
linarith [Nat.lt_floor_add_one b]
826
796
rw [sub_nonneg]
827
797
exact floor_le hb'
@@ -1070,7 +1040,7 @@ theorem sum_mobius_div_self_le (N : ℕ) : |∑ n in range N, μ n / (n : ℚ)|
1070
1040
rw [sum_congr rfl (g := fun d ↦ (μ d : ℚ) * ⌊(N : ℚ) / (d : ℚ)⌋)] at h_sum
1071
1041
swap
1072
1042
intros
1073
- rw [show (N : ℚ) = ((N : ℤ) : ℚ) by norm_cast, Rat.floor_int_div_nat_eq_div ]
1043
+ rw [show (N : ℚ) = ((N : ℤ) : ℚ) by norm_cast, Rat.floor_intCast_div_natCast ]
1074
1044
congr
1075
1045
1076
1046
/- Next, we establish bounds for the error term -/
0 commit comments