Skip to content

Commit 8daf959

Browse files
Fix the build
1 parent cab3d1e commit 8daf959

14 files changed

+101
-185
lines changed

PrimeNumberTheoremAnd/BrunTitchmarsh.lean

+3-3
Original file line numberDiff line numberDiff line change
@@ -36,7 +36,7 @@ def primeInterSieve (x y z : ℝ) (hz : 1 ≤ z) : SelbergSieve where
3636
simp only [ArithmeticFunction.pdiv_apply, ArithmeticFunction.natCoe_apply,
3737
ArithmeticFunction.zeta_apply, hp.ne_zero, ↓reduceIte, Nat.cast_one,
3838
ArithmeticFunction.id_apply, one_div]
39-
apply inv_lt_one
39+
apply inv_lt_one_of_one_lt₀
4040
exact_mod_cast hp.one_lt
4141
level := z
4242
one_le_level := hz
@@ -230,7 +230,7 @@ theorem primesBetween_le (hz : 1 < z) :
230230
have : z ≤ z * (1+Real.log z)^3 := by
231231
apply le_mul_of_one_le_right
232232
· linarith
233-
· apply one_le_pow_of_one_le _ _
233+
· apply one_le_pow₀
234234
linarith [Real.log_nonneg (by linarith)]
235235
linarith [siftedSum_le _ _ _ hx hy hz, primesBetween_le_siftedSum_add x y z hz.le]
236236

@@ -403,7 +403,7 @@ theorem IsBigO.nat_Top_of_atTop (f g : ℕ → ℝ) (h : f =O[Filter.atTop] g) (
403403
simp
404404
· by_cases hg : g n = 0
405405
· simp [hg, h0]
406-
rw [← mul_inv_le_iff']
406+
rw [← mul_inv_le_iff]
407407
apply Finset.le_max'
408408
simp only [Finset.mem_insert, Finset.mem_image, Finset.mem_range]
409409
exact .inr ⟨n, by omega, rfl⟩

PrimeNumberTheoremAnd/Consequences.lean

+6-36
Original file line numberDiff line numberDiff line change
@@ -49,7 +49,7 @@ lemma abel_summation {a : ArithmeticFunction ℝ} (x y : ℝ) (hx : 0 < x) (hxy
4949
← intervalIntegral.integral_deriv_eq_sub hϕ₁ hϕ₂, ← intervalIntegral.integral_const_mul,
5050
intervalIntegral.integral_of_le hxy.le, integral_Ioc_eq_integral_Ioo,
5151
integral_Icc_eq_integral_Ioo]
52-
apply setIntegral_congr
52+
apply setIntegral_congr_fun
5353
· exact measurableSet_Ioo
5454
· intro z hz
5555
have : ⌊z⌋₊ = ⌊y⌋₊ := by
@@ -283,36 +283,6 @@ lemma abel_summation {a : ArithmeticFunction ℝ} (x y : ℝ) (hx : 0 < x) (hxy
283283
intervalIntegral.integral_add_adjacent_intervals (hab.trans hbc) hcd]
284284
simp [A, intervalIntegral.integral_of_le hxy.le, MeasureTheory.integral_Icc_eq_integral_Ioc]
285285

286-
lemma nth_prime_one_eq_three : nth Nat.Prime 1 = 3 := nth_count prime_three
287-
288-
@[simp]
289-
lemma Nat.primeCounting'_eq_zero_iff {n : ℕ} : n.primeCounting' = 0 ↔ n ≤ 2 := by
290-
refine ⟨?_, ?_⟩
291-
· contrapose!
292-
intro h
293-
replace h : 3 ≤ n := by omega
294-
have := monotone_primeCounting' h
295-
have := nth_prime_one_eq_three ▸ primeCounting'_nth_eq 1
296-
omega
297-
· intro hn
298-
have := zeroth_prime_eq_two ▸ primeCounting'_nth_eq 0
299-
have := monotone_primeCounting' hn
300-
omega
301-
302-
303-
@[simp]
304-
lemma Nat.primeCounting_eq_zero_iff {n : ℕ} : n.primeCounting = 0 ↔ n ≤ 1 := by
305-
simp [Nat.primeCounting]
306-
307-
@[simp]
308-
lemma Nat.primeCounting_zero : Nat.primeCounting 0 = 0 :=
309-
Nat.primeCounting_eq_zero_iff.mpr zero_le_one
310-
311-
@[simp]
312-
lemma Nat.primeCounting_one : Nat.primeCounting 1 = 0 :=
313-
Nat.primeCounting_eq_zero_iff.mpr le_rfl
314-
315-
316286
-- @[simps]
317287
-- def ArithmeticFunction.primeCounting : ArithmeticFunction ℝ where
318288
-- toFun x := Nat.primeCounting ⌊x⌋₊
@@ -432,7 +402,7 @@ lemma th43_b (x : ℝ) (hx : 2 ≤ x) :
432402
symm
433403
apply Set.Ico_union_Icc_eq_Icc ?_ hx
434404
norm_num
435-
rw [this, integral_union]
405+
rw [this, setIntegral_union]
436406
· simp only [add_left_eq_self]
437407
apply integral_eq_zero_of_ae
438408
simp only [measurableSet_Ico, ae_restrict_eq]
@@ -699,7 +669,7 @@ lemma sum_von_mangoldt_sub_sum_primes_le (x : ℝ) (hx: 2 ≤ x) :
699669
calc
700670
_ ≤ x^(1:ℝ) := by
701671
apply rpow_le_rpow_of_exponent_le hx_one
702-
apply inv_le_one
672+
apply inv_le_one_of_one_le₀
703673
simp only [one_le_cast]
704674
exact one_le_two.trans hk.1
705675
_ = _ := by
@@ -720,7 +690,7 @@ lemma sum_von_mangoldt_sub_sum_primes_le (x : ℝ) (hx: 2 ≤ x) :
720690
apply floor_le_floor
721691
apply rpow_le_rpow_of_exponent_le hx_one
722692
simp at hk
723-
rw [inv_le_inv _ zero_lt_two]
693+
rw [inv_le_inv _ zero_lt_two]
724694
. exact ofNat_le_cast.mpr hk.1
725695
simp only [cast_pos]
726696
exact lt_of_lt_of_le zero_lt_two hk.1
@@ -821,7 +791,7 @@ theorem WeakPNT'' : (fun x ↦ ∑ n in (Iic ⌊x⌋₊), Λ n) ~[atTop] (fun x
821791
intro b hb
822792
have hb' : 0 ≤ b := le_of_lt (lt_of_lt_of_le (inv_pos_of_pos hε) hb)
823793
rw [abs_of_nonneg, abs_of_nonneg hb']
824-
. apply LE.le.trans _ ((inv_pos_le_iff_one_le_mul' hε).mp hb)
794+
. apply LE.le.trans _ ((inv_le_iff_one_le_mul₀' hε).mp hb)
825795
linarith [Nat.lt_floor_add_one b]
826796
rw [sub_nonneg]
827797
exact floor_le hb'
@@ -1070,7 +1040,7 @@ theorem sum_mobius_div_self_le (N : ℕ) : |∑ n in range N, μ n / (n : ℚ)|
10701040
rw [sum_congr rfl (g := fun d ↦ (μ d : ℚ) * ⌊(N : ℚ) / (d : ℚ)⌋)] at h_sum
10711041
swap
10721042
intros
1073-
rw [show (N : ℚ) = ((N : ℤ) : ℚ) by norm_cast, Rat.floor_int_div_nat_eq_div]
1043+
rw [show (N : ℚ) = ((N : ℤ) : ℚ) by norm_cast, Rat.floor_intCast_div_natCast]
10741044
congr
10751045

10761046
/- Next, we establish bounds for the error term -/

PrimeNumberTheoremAnd/Fourier.lean

+1-1
Original file line numberDiff line numberDiff line change
@@ -61,5 +61,5 @@ theorem fourierIntegral_self_add_deriv_deriv (f : W21) (u : ℝ) :
6161
simp [f.hf, l1, add_mul, Real.fourierIntegral_deriv f.hf' l5 f.hf'', Real.fourierIntegral_deriv f.hf l4 f.hf']
6262
field_simp [pi_ne_zero] ; ring_nf ; simp
6363

64-
@[simp] lemma deriv_ofReal : deriv ofReal' = fun _ => 1 := by
64+
@[simp] lemma deriv_ofReal : deriv ofReal = fun _ => 1 := by
6565
ext x ; exact ((hasDerivAt_id x).ofReal_comp).deriv

PrimeNumberTheoremAnd/Mathlib/Analysis/Asymptotics/Asymptotics.lean

+1-1
Original file line numberDiff line numberDiff line change
@@ -1,6 +1,6 @@
11
import Mathlib.Analysis.Asymptotics.Asymptotics
2-
import Mathlib.Topology.Algebra.Order.Compact
32
import Mathlib.Analysis.SpecialFunctions.Log.Basic
3+
import Mathlib.Topology.Order.Compact
44

55
open Filter Topology
66

PrimeNumberTheoremAnd/Mathlib/MeasureTheory/Function/LocallyIntegrable.lean

+1-1
Original file line numberDiff line numberDiff line change
@@ -1,6 +1,6 @@
11
import Mathlib.MeasureTheory.Function.LocallyIntegrable
22
import Mathlib.MeasureTheory.Integral.IntegrableOn
3-
import Mathlib.Topology.Algebra.Order.Compact
3+
import Mathlib.Topology.Order.Compact
44

55
open MeasureTheory MeasureTheory.Measure Set Function TopologicalSpace Bornology Filter
66

PrimeNumberTheoremAnd/Mathlib/MeasureTheory/Integral/Asymptotics.lean

+1-1
Original file line numberDiff line numberDiff line change
@@ -49,7 +49,7 @@ theorem LocallyIntegrable.integrable_of_isBigO_atTop_of_norm_eq_norm_neg
4949
[MeasurableNeg α] [μ.IsNegInvariant] (hf : LocallyIntegrable f μ)
5050
(hsymm : norm ∘ f =ᵐ[μ] norm ∘ f ∘ Neg.neg) (ho : f =O[atTop] g)
5151
(hg : IntegrableAtFilter g atTop μ) : Integrable f μ := by
52-
refine (isEmpty_or_nonempty α).casesOn (fun _ ↦ Integrable.of_finite μ f) (fun _ ↦ ?_)
52+
refine (isEmpty_or_nonempty α).casesOn (fun _ ↦ Integrable.of_finite) (fun _ ↦ ?_)
5353
let a := -|Classical.arbitrary α|
5454
have h_int : IntegrableOn f (Ici a) μ :=
5555
LocallyIntegrableOn.integrableOn_of_isBigO_atTop (hf.locallyIntegrableOn _) ho hg

PrimeNumberTheoremAnd/Mathlib/NumberTheory/Sieve/Selberg.lean

+1-1
Original file line numberDiff line numberDiff line change
@@ -417,7 +417,7 @@ theorem selberg_bound_muPlus (n : ℕ) (hn : n ∈ divisors P) :
417417
simp only [f]
418418
by_cases h : n = d1.lcm d2
419419
rw [if_pos h, if_pos h]
420-
apply mul_le_one (s.selberg_bound_weights d1) (abs_nonneg <| γ d2)
420+
apply mul_le_one (s.selberg_bound_weights d1) (abs_nonneg <| γ d2)
421421
(s.selberg_bound_weights d2)
422422
rw [if_neg h, if_neg h]
423423
· rw [← Finset.sum_product']

PrimeNumberTheoremAnd/Mathlib/NumberTheory/Sieve/SelbergBounds.lean

+2-2
Original file line numberDiff line numberDiff line change
@@ -328,7 +328,7 @@ lemma sqrt_le_self (x : ℝ) (hx : 1 ≤ x) : Real.sqrt x ≤ x := by
328328
refine Iff.mpr Real.sqrt_le_iff ?_
329329
constructor
330330
· linarith
331-
refine le_self_pow hx ?right.h
331+
refine le_self_pow hx ?right.h
332332
norm_num
333333

334334
lemma Nat.squarefree_dvd_pow (a b N: ℕ) (ha : Squarefree a) (hab : a ∣ b ^ N) : a ∣ b := by
@@ -473,7 +473,7 @@ theorem boundingSum_ge_sum (s : SelbergSieve) (hnu : s.nu = (ζ : ArithmeticFunc
473473
ArithmeticFunction.zeta_apply, Nat.cast_ite, CharP.cast_eq_zero, Nat.cast_one,
474474
ArithmeticFunction.id_apply]
475475
rw [if_neg, one_div]
476-
apply inv_lt_one; norm_cast
476+
apply inv_lt_one_of_one_lt₀; norm_cast
477477
exact hpp.one_lt
478478
exact hpp.ne_zero
479479
apply le_of_eq

0 commit comments

Comments
 (0)