-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathtrain_finetune.py
309 lines (250 loc) · 13.7 KB
/
train_finetune.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
"""
Training a single model (student or teacher)
"""
from __future__ import print_function
import os
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2'
import tensorflow as tf
tf.get_logger().setLevel('ERROR')
import loralib as lora
import warnings
warnings.filterwarnings("ignore", category=UserWarning, module="scipy")
warnings.filterwarnings("ignore", category=FutureWarning)
import argparse
import time
import torch
import torch.optim as optim
import torch.multiprocessing as mp
import torch.distributed as dist
import torch.nn as nn
import torch.backends.cudnn as cudnn
import random
import pandas as pd
import numpy as np
import builtins
from learning_lib.loops import train_vanilla as train, validate_vanilla
from learning_lib.utils import save_dict_to_json, reduce_tensor, adjust_learning_rate, update_dict_to_json, f1, mark_model_trainable
from data_lib.dataloader import get_histo_dataloader
from model_lib.model_factory import load_model
def parse_option():
parser = argparse.ArgumentParser('argument for training')
# basic
parser.add_argument('--print_freq', type=int, default=50, help='print frequency')
parser.add_argument('--batch_size', type=int, default=64, help='batch_size')
parser.add_argument('--num_workers', type=int, default=16, help='num_workers')
parser.add_argument('--epochs', type=int, default=1, help='number of training epochs')
parser.add_argument('--gpu_id', type=str, default='0', help='id(s) for CUDA_VISIBLE_DEVICES')
parser.add_argument('--seed', default=12345, type=int, help='seed for initializing training. choices=[None, 0, 1],')
parser.add_argument('--trial', type=str, default='1', help='trial id')
# optimization
parser.add_argument('--learning_rate', type=float, default=1.0e-4, help='learning rate')
parser.add_argument('--lr_decay_epochs', type=str, default='30,40,60', help='where to decay lr, can be a list')
parser.add_argument('--lr_decay_rate', type=float, default=0.1, help='decay rate for learning rate')
parser.add_argument('--weight_decay', type=float, default=1e-4, help='weight decay')
parser.add_argument('--momentum', type=float, default=0.9, help='momentum')
parser.add_argument('--cosine', action='store_true', help='using cosine annealingdist-url')
# data_lib
# data_lib and model
parser.add_argument('--datafolder', type=str, default='prostate_hv', help='data_lib')
parser.add_argument('--model', type=str, default='phikon_LORA1')
parser.add_argument('--pretrain', type=str, default='Histo', help='Histo, None')
parser.add_argument('--pre_strict', action='store_false', help='strict by default')
parser.add_argument('--learning_strategy', type=str, default='linear', choices=['full_supervised', 'linear', 'full_ft', 'partial_ft', 'lora'])
# Augment
parser.add_argument('--aug_train', type=str, default='RA', help='aug_train')
parser.add_argument('--crop', type=float, default=0.2, help='crop threshold for RandomResizedCrop')
parser.add_argument('--image_size', type=int, default=224, help='image_size')
parser.add_argument('--n_cls', type=int, default=4, help='number of class')
parser.add_argument('--skip_test:', action='store_true', help='strict by default')
# multiprocessing
parser.add_argument('--multiprocessing-distributed', action='store_true',
help='Use multi-processing distributed training to launch '
'N processes per node, which has N GPUs. This is the '
'fastest way to use PyTorch for either single node or '
'multi node data parallel training')
parser.add_argument('--dist-url', default='tcp://127.0.0.1:10002', type=str,
help='url used to set up distributed training')
parser.add_argument('--world-size', default=1, type=int,
help='number of nodes for distributed training')
parser.add_argument('--deterministic', action='store_false', help='Make results reproducible, true by default')
parser.add_argument('--skip_validation', action='store_false', help='Skip validation of teacher')
opt = parser.parse_args()
opt.rank = 0
opt.dist_backend = 'nccl'
# set the path of model and tensorboard
opt.model_path = f"./result/{opt.model.split('_')[0]}/"
opt.pretrained_path = f'./pretrained/'
iterations = opt.lr_decay_epochs.split(',')
opt.lr_decay_epochs = list([])
for it in iterations:
opt.lr_decay_epochs.append(int(it))
#opt.pretrain = opt.pretrained_path + opt.pretrain
opt.model_name = f"{opt.model.split('_')[0]}_{opt.dataset}_{opt.n_cls}cls_{opt.learning_strategy}"
opt.save_folder = os.path.join(opt.model_path, f'{opt.dataset}_{opt.n_cls}cls_{opt.learning_strategy}')
if not os.path.isdir(opt.save_folder):
os.makedirs(opt.save_folder)
return opt
metricAcc_best_acc = 0
metricAcc_best_f1 = 0
metricAcc_best_epoch = 0
metricAcc_best_acc_test = 0
metricAcc_best_f1_test = 0
total_time = time.time()
def main():
opt = parse_option()
# ASSIGN CUDA_ID
os.environ['CUDA_VISIBLE_DEVICES'] = opt.gpu_id
if opt.dist_url == "env://" and opt.world_size == -1:
opt.world_size = int(os.environ["WORLD_SIZE"])
opt.distributed = opt.world_size > 1 or opt.multiprocessing_distributed
ngpus_per_node = torch.cuda.device_count()
if opt.multiprocessing_distributed:
# Since we have ngpus_per_node processes per node, the total world_size needs to be adjusted accordingly
opt.world_size = ngpus_per_node * opt.world_size
# Use torch.multiprocessing.spawn to launch distributed processes: the main_worker process function
mp.spawn(main_worker, nprocs=ngpus_per_node, args=(ngpus_per_node, opt))
else:
main_worker(opt.gpu_id, ngpus_per_node, opt)
def main_worker(gpu, ngpus_per_node, opt):
global metricAcc_best_acc, metricAcc_best_f1, metricAcc_best_epoch, metricAcc_best_acc_test, metricAcc_best_f1_test, total_time
# Set device
opt.gpu = int(gpu)
if opt.multiprocessing_distributed and opt.gpu != 0:
def print_pass(*args):
pass
builtins.print = print_pass
if opt.gpu is not None:
print("Use GPU: {} for training".format(opt.gpu))
if opt.distributed:
if opt.dist_url == "env://" and opt.rank == -1:
opt.rank = int(os.environ["RANK"])
if opt.multiprocessing_distributed:
# For multiprocessing distributed training, rank needs to be the
# global rank among all the processes
opt.rank = opt.rank * ngpus_per_node + gpu
dist.init_process_group(backend=opt.dist_backend, init_method=opt.dist_url, world_size=opt.world_size,
rank=opt.rank)
opt.seed = int(opt.trial)
if opt.seed is not None:
print('opt.deterministic', opt.deterministic)
random.seed(opt.seed)
torch.manual_seed(opt.seed)
cudnn.deterministic = True
cudnn.benchmark = False
np.random.seed(opt.seed)
torch.backends.cudnn.benchmark = False
torch.backends.cudnn.deterministic = True
torch.cuda.manual_seed(opt.seed)
torch.cuda.manual_seed_all(opt.seed)
# Set model, optimizer and loss function
if opt.learning_strategy == 'fully_supervised':
model = load_model(model_name=opt.model, ckpt_path='None', n_cls=opt.n_cls)
else:
model = load_model(model_name=opt.model, ckpt_path='Histo', n_cls=opt.n_cls)
mark_model_trainable(model, learning_strategy=opt.learning_strategy, n_cls=opt.n_cls)
for name, param in model.named_parameters():
if param.requires_grad:
print(f'{name}: requires_grad={param.requires_grad}')
optimizer = optim.Adam(model.parameters(), lr=opt.learning_rate)
criterion = nn.CrossEntropyLoss()
if not torch.cuda.is_available():
print('using CPU, this will be slow')
elif opt.distributed:
# For multiprocessing distributed, DistributedDataParallel constructor
# should always set the single device scope, otherwise,
# DistributedDataParallel will use all available devices.
if opt.gpu is not None:
torch.cuda.set_device(opt.gpu)
model.cuda(opt.gpu)
opt.batch_size = int(opt.batch_size / ngpus_per_node)
opt.num_workers = int((opt.num_workers + ngpus_per_node - 1) / ngpus_per_node)
if 'LORA' in opt.model:
model = torch.nn.parallel.DistributedDataParallel(model, device_ids=[opt.gpu], find_unused_parameters=True)
else:
model = torch.nn.parallel.DistributedDataParallel(model, device_ids=[opt.gpu])
else:
print('multiprocessing_distributed must be with a specifiec gpu id')
model.cuda()
if 'LORA' in opt.model:
model = torch.nn.parallel.DistributedDataParallel(model, find_unused_parameters=True)
else:
model = torch.nn.parallel.DistributedDataParallel(model)
elif opt.gpu is not None:
torch.cuda.set_device(opt.gpu)
model = model.cuda(opt.gpu)
else:
criterion = criterion.cuda()
if torch.cuda.device_count() > 1:
if 'LORA' in opt.model:
model = torch.nn.DataParallel(model, find_unused_parameters=True).cuda()
else:
model = torch.nn.DataParallel(model).cuda()
else:
model = model.cuda()
if not opt.deterministic:
cudnn.benchmark = True
# Set dataloader
train_loader, val_loader, test_loader, train_sampler = get_histo_dataloader(
opt=opt,
batch_size=opt.batch_size,
num_workers=opt.num_workers,
multiprocessing_distributed=opt.multiprocessing_distributed
)
for epoch in range(1, opt.epochs + 1):
adjust_learning_rate(epoch, opt, optimizer)
print("==> training...")
time1 = time.time()
train_acc, train_loss, train_output_stat = train(epoch, train_loader, model, criterion, optimizer, opt)
time2 = time.time()
if opt.multiprocessing_distributed:
metrics = torch.tensor([train_acc, train_loss]).cuda(opt.gpu, non_blocking=True)
reduced = reduce_tensor(metrics, opt.world_size if 'world_size' in opt else 1)
train_acc, train_loss = reduced.tolist()
if not opt.multiprocessing_distributed or opt.rank % ngpus_per_node == 0:
train_f1 = f1(train_output_stat['conf_mat'], opt.n_cls)
print(' * Epoch {}, Acc@1 {:.3f}, , F1 {:.3f}, Time {:.2f}'.format(epoch, train_acc, train_f1, time2 - time1))
val_acc, val_loss, val_output_stat = validate_vanilla(val_loader, model, criterion, opt, prefix='Val')
if test_loader is not None:
test_acc, test_loss, test_output_stat = validate_vanilla(test_loader, model, criterion, opt, prefix='Test')
if not opt.multiprocessing_distributed or opt.rank % ngpus_per_node == 0:
val_f1 = f1(val_output_stat['conf_mat'], opt.n_cls)
if test_loader is not None:
test_f1 = f1(test_output_stat['conf_mat'], opt.n_cls)
else:
test_acc, test_f1 = 0, 0
#wandb_logger.log({'val_acc': val_acc, 'val_f1': val_f1, 'test_acc': test_acc, 'test_f1': test_f1}, commit=True)
# save the best model
if val_acc > metricAcc_best_acc:
metricAcc_best_epoch = epoch
metricAcc_best_acc, metricAcc_best_f1 = val_acc, val_f1
metricAcc_best_acc_test, metricAcc_best_f1_test = test_acc, test_f1
state = {'model': model.state_dict(),
'metricAcc_best_epoch': metricAcc_best_epoch,
'metricAcc_best_acc': metricAcc_best_acc,
'metricAcc_best_f1': metricAcc_best_f1,
'optimizer': optimizer.state_dict()
}
save_file = os.path.join(opt.save_folder, 'net_best.pth')
torch.save(state, save_file)
print('saving the best model!')
if 'LORA' in opt.model:
save_lora = os.path.join(opt.save_folder, 'net_lora_best.pth')
torch.save(lora.lora_state_dict(model), save_lora)
print('saving the best LORA model!')
print(' ** Valid Acc@1 {:.3f} Valid F1 {:.4f} Test Acc@1 {:.3f} Test F1 {:.4f}'.format(val_acc, val_f1, test_acc, test_f1))
print(' ** [Best Model (metric-Acc)] Valid Acc@1 {:.3f} Valid F1 {:.3f} Test Acc@1 {:.3f} Test F1 {:.3f} - Epoch {}'.format(
metricAcc_best_acc, metricAcc_best_f1, metricAcc_best_acc_test, metricAcc_best_f1_test, metricAcc_best_epoch))
valid_metrics = {'val_cf': pd.Series({'conf_mat': val_output_stat['conf_mat']}).to_json(orient='records'), 'val_loss': val_loss, 'val_acc': val_acc, 'test_acc': test_acc}
update_dict_to_json(epoch, valid_metrics, os.path.join(opt.save_folder, "stat.json"))
if not opt.multiprocessing_distributed or opt.rank % ngpus_per_node == 0:
state = {k: v for k, v in opt._get_kwargs()}
# No. parameters(M)
num_params = (sum(p.numel() for p in model.parameters()) / 1000000.0)
state['Total params'] = num_params
state['Total time'] = float('%.2f' % ((time.time() - total_time) / 3600.0))
params_json_path = os.path.join(opt.save_folder, "parameters.json")
save_dict_to_json(state, params_json_path)
print(' ** [Best Model (metric-Acc)] Valid Acc@1 {:.3f} Valid F1 {:.3f} Test Acc@1 {:.3f} Test F1 {:.3f} - Epoch {}'.format(
metricAcc_best_acc, metricAcc_best_f1, metricAcc_best_acc_test, metricAcc_best_f1_test, metricAcc_best_epoch))
if __name__ == '__main__':
main()