-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathvqe.py
186 lines (146 loc) · 5.69 KB
/
vqe.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
from qiskit_aer.primitives import Sampler, Estimator
from qiskit.circuit import QuantumCircuit
from qiskit.providers.backend import Backend
from qiskit_aer.noise.noise_model import NoiseModel
from qiskit import transpile
from qiskit.quantum_info import SparsePauliOp
from qiskit_algorithms.minimum_eigensolvers import VQE
from qiskit_algorithms.optimizers import OptimizerResult, COBYLA, SLSQP, L_BFGS_B
from grouping import measurement_circuits_qwc, append_measurement_circuits
from numpy import ndarray, pi, real, random
def initialize_parameters(
init_params: float | ndarray | list,
num_params: int,
):
if isinstance(init_params, float):
return init_params * random.randn(num_params)
elif isinstance(init_params, list):
return ndarray(init_params)
elif isinstance(init_params, ndarray):
return init_params
class vqe_ideal:
"""_summary_
"""
def __init__(
self,
ansatz: QuantumCircuit,
init_params: float | ndarray,
observable: SparsePauliOp,
) -> None:
self.circuit = ansatz
self.init_params = initialize_parameters(init_params, ansatz.num_parameters)
self.observable = observable
self.counts = []
self.values = []
return None
def store_intermediate_result(
self, eval_count, parameters, mean, std
):
self.counts.append(eval_count)
self.values.append(mean)
print("iter {0} \tvalue = {1}".format(eval_count, mean))
def run(self):
solver = VQE(
Estimator(),
self.circuit,
COBYLA(maxiter=500),
initial_point=self.init_params,
callback=self.store_intermediate_result
)
self.results = solver.compute_minimum_eigenvalue(operator=self.observable)
return self.results
class vqe_with_noise:
"""Variational Quantum Eigensolver
"""
def __init__(
self,
ansatz: QuantumCircuit,
backend: Backend,
init_params: ndarray,
observables: list,
*,
run_options: dict | None = None,
):
"""
Args:
ansatz (QuantumCircuit): Ansatz circuit for VQE algorithm
backend (Backend): Backend of the device, based on which the noise model is automatically created
init_params (ndarray): Initial parameters of the ansatz circuit
observables (list): Grouped observables, should be formatted as a list of dictionaries
"""
self.ansatz = ansatz
self.backend = backend
self.init_params = initialize_parameters(init_params, ansatz.num_parameters)
self.observables = observables
self.num_groups = len(observables)
run_options = {} if run_options is None else run_options
self.sampler = Sampler(
backend_options = {
'method': 'statevector',
'device': 'CPU',
'noise_model': NoiseModel.from_backend(backend)
},
skip_transpilation=True
)
self.sampler.set_options(**run_options)
self.estimator = Estimator(
backend_options = {
'method': 'statevector',
'device': 'CPU',
'noise_model': NoiseModel.from_backend(backend)
},
skip_transpilation=True
)
self.estimator.set_options(**run_options)
self.groups = measurement_circuits_qwc(
self.observables
)
self.final_circuits = append_measurement_circuits(
self.ansatz,
self.groups,
self.backend
)
self.counts = []
self.values = []
def fun(
self,
params: ndarray,
) -> float:
assigned_circuits = [
c.assign_parameters(params) for c in self.final_circuits
]
result = self.sampler.run(
circuits=assigned_circuits
).result()
quasi_dists = result.quasi_dists
objective = self.get_expectation(quasi_dists)[0]
count = len(self.counts) + 1
self.counts.append(count)
self.values.append(objective)
return objective
def store_intermediate_result(
self, xk
):
print(f"iter {self.counts[-1]} \tvalue = {self.values[-1]}")
def get_expectation(
self,
quasi_dists
) -> float:
expectation = 0.0
# Iterate over the circuits (groups)
for i, g in enumerate(self.groups):
readouts = list( quasi_dists[i].keys() )
probs = list( quasi_dists[i].values() )
# Iterate over the observables in the group g
for j, obs in enumerate(g["observables"]):
obs_sites = g["measure_sites"][j]
# Iterate over the readouts from the circuits (group g)
# E.g., if the observable is (IIXY, 0.3), readout is (1101, 0.04),
# the contribution to the expectation is 0.3 * 0.04 * (-1)^(0+1) = -0.012,
# where (0+1) refers to the last two digits for non-identity terms in the observable
for k, out_dec in enumerate(readouts):
# Convert the readout (stored as decimal) to binary list[int]
out_bin = [int(s) for s in list(f"{out_dec:0{self.ansatz.num_qubits}b}")]
expectation += real( obs.coeffs * probs[k] * \
(-1) ** sum( [out_bin[s] for s in obs_sites] ) )
return expectation